The influence of Cl doping on the structural, electronic properties and Li-ion migration of LiFePO4: A DFT study

被引:18
作者
Zaki, N. H. M. [1 ,2 ]
Ahmad, S. I. [3 ]
Sazman, F. N. [2 ]
Badrudin, F. W. [3 ]
Abdullah, A. L. A. [3 ]
Taib, M. F. M. [1 ,2 ]
Hassan, O. H. [1 ,5 ]
Yahya, M. Z. A. [1 ,4 ]
机构
[1] Univ Teknol MARA, Inst Sci, Ion Mat & Devices iMADE, Shah Alam 40450, Selangor, Malaysia
[2] Univ Teknol MARA, Fac Appl Sci, Shah Alam 40450, Selangor, Malaysia
[3] Univ Pertahanan Nas Malaysia, Ctr Def Fdn Studies, Kuala Lumpur 57000, Malaysia
[4] Univ Pertahanan Nas Malaysia, Fac Def Sci & Technol, Kuala Lumpur 57000, Malaysia
[5] Univ Teknol MARA, Fac Art & Design, Shah Alam 40450, Selangor, Malaysia
关键词
Density functional theory; LiFePO4; Cl doping; Electronic properties; Migration energy; CATHODE MATERIALS; ELECTROCHEMICAL PROPERTIES; LITHIUM DIFFUSION; CRYSTAL-STRUCTURE; PHOSPHO-OLIVINES; 1ST-PRINCIPLES; PERFORMANCE; BATTERIES; LI2FESIO4; DENSITY;
D O I
10.1016/j.comptc.2023.114029
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Modifying LiFePO4 with anion doping can improve the electrochemical performance of lithium-ion batteries. Here, theoretical work of Cl-doped LiFePO4 is performed using density functional theory (DFT) to calculate the structural, electronic properties and Li-ion migration. The substitution of chlorine for oxygen has expanded the LiFePO4 lattice due to the larger Cl- ions ionic radii. Cl doping also contributes to the band gap reduction, indicating the material exhibits better electronic conductivity. The migration energy for Li-ion migration has decreased from 0.838 eV to 0.709 eV upon Cl doping. These doping effects imply that LiFePO4 has improved the electrochemical performance of lithium-ion batteries.
引用
收藏
页数:6
相关论文
共 51 条
[1]  
Ahmad Shahrul Izwan, 2022, Key Engineering Materials, V908, P293, DOI 10.4028/p-csw2yc
[2]   Effect of lithium intercalation on the structural and electronic properties of layered LiFeSO4OH and layered FeSO4OH using first-principle calculations [J].
Badrudin, F. W. ;
Taib, M. F. M. ;
Hassan, O. H. ;
Yahya, M. Z. A. .
COMPUTATIONAL MATERIALS SCIENCE, 2016, 119 :144-151
[3]  
Bo M.W., 2016, MANIPULATION SPIN FL, P1
[4]   Electronically conductive phospho-olivines as lithium storage electrodes [J].
Chung, SY ;
Bloking, JT ;
Chiang, YM .
NATURE MATERIALS, 2002, 1 (02) :123-128
[5]   Enhanced electrochemical performance and storage mechanism of LiFePO4 doped by Co, Mn and S elements for lithium-ion batteries [J].
Cui, Zhihong ;
Guo, Xin ;
Ren, Junqiang ;
Xue, Hongtao ;
Tang, Fuling ;
La, Peiqing ;
Li, Hui ;
Li, Junchen ;
Lu, Xuefeng .
ELECTROCHIMICA ACTA, 2021, 388
[6]   Improving the High-Voltage Li2FeMn3O8 Cathode by Chlorine Doping [J].
Dai, Jiaqi ;
Zhou, Lihui ;
Han, Xiaogang ;
Carter, Marcus ;
Hu, Liangbing .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (17) :10820-10825
[7]   Calculations of Li-Ion Diffusion in Olivine Phosphates [J].
Dathar, Gopi Krishna Phani ;
Sheppard, Daniel ;
Stevenson, Keith J. ;
Henkelman, Graeme .
CHEMISTRY OF MATERIALS, 2011, 23 (17) :4032-4037
[8]   Li-ion batteries: basics, progress, and challenges [J].
Deng, Da .
ENERGY SCIENCE & ENGINEERING, 2015, 3 (05) :385-418
[9]   Synthesis of F-doped LiFePO4/C cathode materials for high performance lithium-ion batteries using co-precipitation method with hydrofluoric acid source [J].
Gao, Chao ;
Zhou, Jian ;
Liu, Guizhen ;
Wang, Lin .
JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 727 :501-513
[10]   Effect of Ru Doping on the Properties of LiFePO4/C Cathode Materials for Lithium-Ion Batteries [J].
Gao, Yuan ;
Xiong, Kun ;
Zhang, Haidong ;
Zhu, Bingfeng .
ACS OMEGA, 2021, 6 (22) :14122-14129