OKseqHMM: a genome-wide replication fork directionality analysis toolkit

被引:8
作者
Liu, Yaqun [1 ]
Wu, Xia [1 ]
d'Aubenton-Carafa, Yves [2 ]
Thermes, Claude [2 ]
Chen, Chun-Long [1 ,3 ]
机构
[1] Univ PSL, Sorbonne Univ, Inst Curie, CNRS UMR3244, F-75005 Paris, France
[2] Univ Paris Saclay, Inst Integrat Biol Cell I2BC, CEA, CNRS, F-91198 Gif Sur Yvette, France
[3] Sun Yat Sen Univ, Zhongshan Sch Med, Guangzhou 510080, Guangdong, Peoples R China
关键词
DNA-REPLICATION; PATTERNS; DAMAGE;
D O I
10.1093/nar/gkac1239
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
During each cell division, tens of thousands of DNA replication origins are co-ordinately activated to ensure the complete duplication of the human genome. However, replication fork progression can be challenged by many factors, including co-directional and head-on transcription-replication conflicts (TRC). Head-on TRCs are more dangerous for genome in-tegrity. To study the direction of replication fork movement and TRCs, we developed a bioinformatics toolkit called OKseqHMM (https://github.com/CL-CHEN-Lab/OK-Seq, https://doi.org/10.5281/zenodo. 7428883). Then, we used OKseqHMM to analyse a large number of datasets obtained by Okazaki fragment sequencing to directly measure the genome-wide replication fork directionality (RFD) and to accurately predict replication initiation and termination at a fine resolution in organisms including yeast, mouse and human. We also successfully applied our analysis to other genome-wide sequencing techniques that also contain RFD information (e.g. eS-PAN, TrAEL-seq). Our toolkit can be used to predict replication initiation and fork progression direction genome-wide in a wide range of cell models and growth conditions. Comparing the replication and transcription directions allows identifying loci at risk of TRCs, particularly head-on TRCs, and investigating their role in genome instability by checking DNA damage data, which is of prime importance for human health.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] RTEL1 Is a Replisome-Associated Helicase That Promotes Telomere and Genome-Wide Replication
    Vannier, Jean-Baptiste
    Sandhu, Sumit
    Petalcorin, Mark I. R.
    Wu, Xiaoli
    Nabi, Zinnatun
    Ding, Hao
    Boulton, Simon J.
    SCIENCE, 2013, 342 (6155) : 239 - 242
  • [42] Genome-wide nucleosome map and cytosine methylation levels of an ancient human genome
    Pedersen, Jakob Skou
    Valen, Eivind
    Velazquez, Amhed M. Vargas
    Parker, Brian J.
    Rasmussen, Morten
    Lindgreen, Stinus
    Lilje, Berit
    Tobin, Desmond J.
    Kelly, Theresa K.
    Vang, Soren
    Andersson, Robin
    Jones, Peter A.
    Hoover, Cindi A.
    Tikhonov, Alexei
    Prokhortchouk, Egor
    Rubin, Edward M.
    Sandelin, Albin
    Gilbert, M. Thomas P.
    Krogh, Anders
    Willerslev, Eske
    Orlando, Ludovic
    GENOME RESEARCH, 2014, 24 (03) : 454 - 466
  • [43] Genome-wide DNA methylation analysis: no evidence for stable hemimethylation in the sheep muscle genome
    Couldrey, C.
    Brauning, R.
    Henderson, H. V.
    McEwan, J. C.
    ANIMAL GENETICS, 2015, 46 (02) : 185 - 189
  • [44] The genome-wide structure of the Jewish people
    Behar, Doron M.
    Yunusbayev, Bayazit
    Metspalu, Mait
    Metspalu, Ene
    Rosset, Saharon
    Parik, Jueri
    Rootsi, Siiri
    Chaubey, Gyaneshwer
    Kutuev, Ildus
    Yudkovsky, Guennady
    Khusnutdinova, Elza K.
    Balanovsky, Oleg
    Semino, Ornella
    Pereira, Luisa
    Comas, David
    Gurwitz, David
    Bonne-Tamir, Batsheva
    Parfitt, Tudor
    Hammer, Michael F.
    Skorecki, Karl
    Villems, Richard
    NATURE, 2010, 466 (7303) : 238 - U112
  • [45] Environmental adaptability and stress tolerance of Laribacter hongkongensis: a genome-wide analysis
    Lau, Susanna K. P.
    Fan, Rachel Y. Y.
    Ho, Tom C. C.
    Wong, Gilman K. M.
    Tsang, Alan K. L.
    Teng, Jade L. L.
    Chen, Wenyang
    Watt, Rory M.
    Curreem, Shirly O. T.
    Tse, Herman
    Yuen, Kwok-Yung
    Woo, Patrick C. Y.
    CELL AND BIOSCIENCE, 2011, 1
  • [46] Application of multivariate curve resolution to the analysis of yeast genome-wide screens
    Jaumot, Joaquim
    Pina, Benjamin
    Tauler, Roma
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2010, 104 (01) : 53 - 64
  • [47] Genome-wide comparative analysis of flowering genes between Arabidopsis and mungbean
    Kim, Sue K.
    Lee, Taeyoung
    Kang, Yang Jae
    Hwang, Won Joo
    Kim, Kil Hyun
    Moon, Jung-Kyung
    Kim, Moon Young
    Lee, Suk-Ha
    GENES & GENOMICS, 2014, 36 (06) : 799 - 808
  • [48] Genome-wide analysis of alternative splicing evolution among Mus subspecies
    Harr, Bettina
    Turner, Leslie M.
    MOLECULAR ECOLOGY, 2010, 19 : 228 - 239
  • [49] DNA methylation and body-mass index: a genome-wide analysis
    Dick, Katherine J.
    Nelson, Christopher P.
    Tsaprouni, Loukia
    Sandling, Johanna K.
    Aissi, Dylan
    Wahl, Simone
    Meduri, Eshwar
    Morange, Pierre-Emmanuel
    Gagnon, France
    Grallert, Harald
    Waldenberger, Melanie
    Peters, Annette
    Erdmann, Jeanette
    Hengstenberg, Christian
    Cambien, Francois
    Goodall, Alison H.
    Ouwehand, Willem H.
    Schunkert, Heribert
    Thompson, John R.
    Spector, Tim D.
    Gieger, Christian
    Tregout, David-Alexandre
    Deloukas, Panos
    Samani, Nilesh J.
    LANCET, 2014, 383 (9933) : 1990 - 1998
  • [50] Genome-Wide Association Analysis of Adaptation Using Environmentally Predicted Traits
    van Heerwaarden, Joost
    van Zanten, Martijn
    Kruijer, Willem
    PLOS GENETICS, 2015, 11 (10):