Dynamic parameter identification of a high g accelerometer based on BP-PSO algorithm

被引:9
|
作者
Guo, Cui [1 ]
Shi, Yunbo [1 ]
Cao, Huiliang [1 ]
Wen, Xiaojie [1 ]
Zhao, Rui [1 ]
机构
[1] North Univ China, Sci & Technol Elect Test & Measurement Lab, Taiyuan 030051, Shanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Hopkinson bar; System identification; Dynamic test; High g accelerometer; Neural network; CALIBRATION;
D O I
10.1016/j.sna.2022.114024
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Dynamic calibration is an important measurement method to improve the dynamic performance of sensors. However, the structure and packaging of the accelerometer and the ubiquitous noise interfered with the results. Therefore, a method based on BP neural network and particle swarm optimization algorithm is proposed to dynamically calibrate the elevation accelerometer in a composite package in the frequency domain, to realize the systematic identification of the accelerometer dynamic model. Numerical simulations and experimental results demonstrate that compared with the narrow pulse width calibration theory, this method achieves the accuracy requirement while broadening the calibration band by more than 7 times. It is also proved that this method is effective in parameter identification.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Hybrid PSO-Complex Algorithm Based Parameter Identification for a Composite Load Model
    Del Castillo, Manuelito Y., Jr.
    Song, Hwachang
    Lee, Byongjun
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2013, 8 (03) : 464 - 471
  • [22] Application of genetic algorithm PSO in Parameter Identification of SCARA Robot
    Feng Fei
    Hu Hongjie
    Quo Zhongtong
    2017 CHINESE AUTOMATION CONGRESS (CAC), 2017, : 923 - 927
  • [23] Nonlinear time delay systems identification based on dynamic BP algorithm
    Han, Bing
    Han, Min
    Dalian Ligong Daxue Xuebao/Journal of Dalian University of Technology, 2010, 50 (05): : 777 - 781
  • [24] Parameter Identification of PMSMs Using Experimental Measurements and a PSO Algorithm
    Sandre-Hernandez, Omar
    Morales-Caporal, Roberto
    Rangel-Magdaleno, Jose
    Peregrina-Barreto, Hayde
    Noel Hernandez-Perez, Julio
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2015, 64 (08) : 2146 - 2154
  • [25] A High-accuracy Parameter Estimation PSO Algorithm
    Yin, Yan-chao
    Sun, Lin-fu
    Han, Min
    2008 INTERNATIONAL CONFERENCE ON EMBEDDED SOFTWARE AND SYSTEMS SYMPOSIA, PROCEEDINGS, 2008, : 7 - 12
  • [26] Magnetic property parameter identification of steel pole based on GA-PSO hybrid algorithm
    He, Cunfu
    Wang, Zhi
    Liu, Xiucheng
    Wang, Xueqian
    Wu, Bin
    Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 2017, 38 (04): : 838 - 843
  • [27] Dynamic model parameter identification and simulation of SCR based on genetic algorithm
    Hongjuan, Ren
    Diming, Lou
    Jian, Zhu
    Yiping, Luo
    Open Chemical Engineering Journal, 2015, 9 (01): : 62 - 66
  • [28] Dynamic response of high-g MEMs accelerometer
    Zou, Hua
    Dandao Xuebao/Journal of Ballistics, 2010, 22 (01): : 100 - 102
  • [29] Identification of CTG Based on BP Neural Network Optimized by PSO
    Zhou Hongbiao
    Ying Genwang
    2012 11TH INTERNATIONAL SYMPOSIUM ON DISTRIBUTED COMPUTING AND APPLICATIONS TO BUSINESS, ENGINEERING & SCIENCE (DCABES), 2012, : 108 - 111
  • [30] Multi-agent architecture for smart micro-grid optimal control using a hybrid BP-PSO algorithm for wind power prediction
    Omar Elamine, Didi
    Nfaoui, El Habib
    Jaouad, Boumhidi
    2014 SECOND WORLD CONFERENCE ON COMPLEX SYSTEMS (WCCS), 2014, : 554 - 560