Combustion induced synthesis of multicomponent Cu-based catalysts for autocatalytic CO hydrogenation to methanol in a three-phase reactor system

被引:7
作者
Pandey, Vaibhav [1 ]
Pant, Kamal K. [1 ]
Upadhyayula, Sreedevi [1 ]
机构
[1] Indian Inst Technol Delhi, Dept Chem Engn, New Delhi 110016, India
来源
REACTION CHEMISTRY & ENGINEERING | 2023年 / 8卷 / 02期
关键词
CU/ZNO/AL2O3; CATALYSTS; SLURRY REACTORS; OXYGEN VACANCY; ADSORPTION; ZNO; SELECTIVITY; OXIDATION; SITE; DECOMPOSITION; OPTIMIZATION;
D O I
10.1039/d2re00427e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Multicomponent Cu-based catalysts with ZnO/MgO were prepared by the solvent combustion method and the activity test was performed for CO hydrogenation to methanol in a slurry reactor. The promotional effect of ZnO and MgO on the physicochemical and structural properties and their correlation with the catalytic activity in the slurry reactor were analyzed. The space-time yield (STY) of the methanol synthesis revealed the relationship with the Cu-0 surface area, particle size, and initial methanol concentration. The CuZnMg catalysts exhibited higher Cu-0 surface area and Cu dispersion, and the promotional effect of MgO on Cu/ZnO results in a maximum STY of 527.23 g(MeOH) kg(cat)(-1) h(-1). The initial methanol concentration of 0.04% enhances the activity by 14.3% (615.8 g(MeOH) kg(cat)(-1) h(-1)) of CuZnMg by an autocatalytic pathway of methanol synthesis, which illuminates the concept of the paradigm shift of the methanol synthesis mechanism. It was observed that incorporation of MgO further increases the defect sites and increases the activity. The synergistic effect of the ZnO and CuMgO highly active interface contributed to an increase in the catalytic performance of the CuZnMg catalyst. The time-on-stream (TOS) study for 30 h revealed the higher activity and stability of the CuZnMg catalyst while CuMg started to deactivate after 3 h revealing the synergistic effect of ZnO. Further DFT results confirmed the promotional role of MgO and ZnO in the catalytic activity and stability. The Cu binding on the ZnOMgO surface was found to be higher than those on CuZnO and CuMgO which further confirmed that the strong metal support interaction (SMSI) revealed the higher activity of CuZnMg.
引用
收藏
页码:442 / 454
页数:13
相关论文
共 50 条
  • [1] Promotional role of methanol and CO2 in carbon dioxide-rich syngas hydrogenation over slurry reactor utilizing combustion induced Cu-based catalysts
    Pandey, Vaibhav
    Singh, Priyanshu Pratap
    Pant, Kamal Kishore
    Upadhyayula, Sreedevi
    Sengupta, Siddhartha
    MATERIALS TODAY SUSTAINABILITY, 2025, 29
  • [2] The Mechanism of CO and CO2 Hydrogenation to Methanol over Cu-Based Catalysts
    Studt, Felix
    Behrens, Malte
    Kunkes, Edward L.
    Thomas, Nygil
    Zander, Stefan
    Tarasov, Andrey
    Schumann, Julia
    Frei, Elias
    Varley, Joel B.
    Abild-Pedersen, Frank
    Norskov, Jens K.
    Schloegl, Robert
    CHEMCATCHEM, 2015, 7 (07) : 1105 - 1111
  • [3] Optimization of the continuous coprecipitation in a microfluidic reactor: Cu-based catalysts for CO2 hydrogenation into methanol
    L'hospital, Valentin
    Heyte, Svetlana
    Paul, Sebastien
    Parkhomenko, Ksenia
    Roger, Anne-Cecile
    FUEL, 2022, 319
  • [4] Experimental and theoretical study unveiling the role of solvents on CO activation and hydrogenation to methanol in three-phase reactor system
    Pandey, Vaibhav
    Singh, Rajan
    Pant, Kamal K.
    Upadhyayula, Sreedevi
    JOURNAL OF MOLECULAR STRUCTURE, 2023, 1274
  • [5] Tailoring of Hydrotalcite-Derived Cu-Based Catalysts for CO2 Hydrogenation to Methanol
    Frusteri, Leone
    Cannilla, Catia
    Todaro, Serena
    Frusteri, Francesco
    Bonura, Giuseppe
    CATALYSTS, 2019, 9 (12)
  • [6] Selective CO2 Hydrogenation to Methanol by Halogen Deposition over a Cu-Based Catalyst
    Corda, Massimo
    Chernyak, Sergei A.
    Marinova, Maya
    Morin, Jean-Charles
    Trentesaux, Martine
    Kondratenko, Vita A.
    Kondratenko, Evgenii V.
    Ordomsky, Vitaly V.
    Khodakov, Andrei Y.
    ACS CATALYSIS, 2024, 14 (23): : 17244 - 17252
  • [7] The Development of Uncalcined Cu-Based Catalysts by Liquid Reduction Method for CO2 Hydrogenation to Methanol
    Dong, Xiaosu
    Ma, Shuxin
    Gao, Peng
    CATALYSIS LETTERS, 2023, 153 (06) : 1696 - 1707
  • [8] Enhancement of CO2 hydrogenation to methanol over Cu-based catalysts mixed with hydrophobic additives
    Huang, Lei
    Cui, Lingrui
    Liu, Cao
    Wei, Xingguo
    Liu, Yechunzi
    Cao, Fahai
    CATALYSIS SCIENCE & TECHNOLOGY, 2025,
  • [9] Enhanced activity of CexZr1-xO2 solid solutions supported Cu-based catalysts for hydrogenation of CO2 to methanol
    Zuo, Junyi
    Na, Wei
    Zhang, Pingyao
    Yang, Xuelei
    Wen, Jianlin
    Zheng, Min
    Wang, Hua
    MOLECULAR CATALYSIS, 2022, 526
  • [10] Development of highly active Cu-based CO2 hydrogenation catalysts by solution combustion synthesis (SCS): Effects of synthesis variables
    Ali, Sardar
    Kumar, Dharmesh
    Mondal, Kartick C.
    El-Naas, Muftah H.
    CATALYSIS COMMUNICATIONS, 2022, 172