Parameter identification and SOC estimation of lithium-ion batteries based on AGCOA-ASRCKF

被引:5
|
作者
Chu, Yunkun [1 ]
Li, Junhong [1 ]
Gu, Juping [1 ]
Qiang, Yujian [1 ]
机构
[1] Nantong Univ, Sch Elect Engn, Nantong, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium-ion battery; Second-order RC model; State of charge; Coyote optimization algorithm; Cubature Kalman filter; COYOTE OPTIMIZATION ALGORITHM; OF-CHARGE ESTIMATION; ONLINE STATE;
D O I
10.1007/s43236-022-00525-8
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The state of charge (SOC) is an important parameter in battery management systems (BMS), and its accuracy is very important. In this paper, a co-estimation with the adaptive global optimal guided coyote optimization algorithm and the adaptive square root cubature Kalman filter (AGCOA-ASRCKF) is used to perform the parameter identification and SOC estimation of a lithium-ion second-order RC model. The AGCOA effectively solves the problems where traditional heuristic algorithms tend to fall into local optimum and have a slow convergence speed. The AGCOA can accurately identify the parameters of the battery model. At the same time, when compared with the cubature Kalman filter, the ASRCKF introduces a square root filter and adds a residual sequence to adaptively update the covariance of the process noise and measurement noise, which improves the estimation accuracy of the SOC. The method proposed in this paper is verified by intermittent constant current test, dynamic stress test, and the federal urban driving schedule. Simulation results show that a high-precision battery model can be established by AGCOA-ASRCKF. In addition, the predicted value of the terminal voltage is basically consistent with the actual value. At the same time, the SOC estimation error can be controlled to within 1.5%, and the algorithm has good robustness and reliability in the presence of errors in the initial SOC.
引用
收藏
页码:308 / 319
页数:12
相关论文
共 50 条
  • [21] A Comparison Study of the Model Based SOC Estimation Methods For Lithium-Ion Batteries
    Xu, Jun
    Cao, Binggang
    Cao, Junyi
    Zou, Zhongyue
    Mi, Chunting Chris
    Chen, Zheng
    2013 9TH IEEE VEHICLE POWER AND PROPULSION CONFERENCE (VPPC), 2013, : 1 - 5
  • [22] An Online SOC and SOH Estimation Model for Lithium-Ion Batteries
    Huang, Shyh-Chin
    Tseng, Kuo-Hsin
    Liang, Jin-Wei
    Chang, Chung-Liang
    Pecht, Michael G.
    ENERGIES, 2017, 10 (04):
  • [23] A hybrid Kalman filter for SOC estimation of lithium-ion batteries
    Hao, Tianyun
    Ding, Jie
    Tu, Taotao
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 5222 - 5227
  • [24] The Joint Estimation of SOC-SOH for Lithium-Ion Batteries Based on BiLSTM-SA
    Wu, Lingling
    Chen, Chao
    Li, Zhenhua
    Chen, Zhuo
    Li, Hao
    ELECTRONICS, 2025, 14 (01):
  • [25] Nonlinear modeling and SOC estimation of lithium-ion batteries based on block-oriented structures
    Chu, Yunkun
    Cui, Naxin
    Liu, Kailong
    ENERGY, 2025, 315
  • [26] Novel method for modelling and adaptive estimation for SOC and SOH of lithium-ion batteries
    Li, Zuxin
    Shen, Shengyu
    Zhou, Zhe
    Cai, Zhiduan
    Gu, Weimin
    Zhang, Fengying
    JOURNAL OF ENERGY STORAGE, 2023, 62
  • [27] Adaptive Parameter Identification and State-of-Charge Estimation of Lithium-Ion Batteries
    Rahimi-Eichi, Habiballah
    Chow, Mo-Yuen
    38TH ANNUAL CONFERENCE ON IEEE INDUSTRIAL ELECTRONICS SOCIETY (IECON 2012), 2012, : 4012 - 4017
  • [28] Subspace-based modeling and parameter identification of lithium-ion batteries
    Li, Yong
    Liao, Chenglin
    Wang, Lifang
    Wang, Liye
    Xu, Dongping
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2014, 38 (08) : 1024 - 1038
  • [29] Parameter identification and identifiability analysis of lithium-ion batteries
    Choi, Yun Young
    Kim, Seongyoon
    Kim, Kyunghyun
    Kim, Sanghyun
    Choi, Jung-Il
    ENERGY SCIENCE & ENGINEERING, 2022, 10 (02) : 488 - 506
  • [30] On-line parameter identification and SOC estimation of nonlinear model of lithium-ion battery based on Wiener structure
    Li, Junhong
    Bai, Guixiang
    Yan, Jun
    Gu, Juping
    JOURNAL OF ENERGY STORAGE, 2024, 92