Handling high-dimensional data with missing values by modern machine learning techniques

被引:9
作者
Chen, Sixia [1 ]
Xu, Chao [1 ]
机构
[1] Univ Oklahoma, Dept Biostat & Epidemiol, Hlth Sci Ctr, Oklahoma City, OK 73126 USA
基金
美国国家卫生研究院;
关键词
Deep learning; high-dimensional data; imputation; machine learning; missing data; JACKKNIFE VARIANCE-ESTIMATION; MULTIPLE IMPUTATION; FRACTIONAL IMPUTATION; ITEM NONRESPONSE; INFERENCE; VARIABLES; SELECTION;
D O I
10.1080/02664763.2022.2068514
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
High-dimensional data have been regarded as one of the most important types of big data in practice. It happens frequently in practice including genetic study, financial study, and geographical study. Missing data in high dimensional data analysis should be handled properly to reduce nonresponse bias. We discuss some modern machine learning techniques including penalized regression approaches, tree-based approaches, and deep learning (DL) for handling missing data with high dimensionality. Specifically, our proposed methods can be used for estimating general parameters of interest including population means and percentiles with imputation-based estimators, propensity score estimators, and doubly robust estimators. We compare those methods through some limited simulation studies and a real application. Both simulation studies and real application show the benefits of DL and XGboost approaches compared with other methods in terms of balancing bias and variance.
引用
收藏
页码:786 / 804
页数:19
相关论文
共 67 条
[1]   A Review of Hot Deck Imputation for Survey Non-response [J].
Andridge, Rebecca R. ;
Little, Roderick J. A. .
INTERNATIONAL STATISTICAL REVIEW, 2010, 78 (01) :40-64
[2]  
[Anonymous], 2012, Survey Methodology
[3]  
[Anonymous], 1987, Statistical analysis with missing data
[4]  
[Anonymous], 2018, bioRxiv
[5]   Doubly robust estimation in missing data and causal inference models [J].
Bang, H .
BIOMETRICS, 2005, 61 (04) :962-972
[6]  
Beaulieu-Jones BK, 2017, BIOCOMPUT-PAC SYM, P207, DOI 10.1142/9789813207813_0021
[7]   Doubly Robust Inference for the Distribution Function in the Presence of Missing Survey Data [J].
Boistard, Helene ;
Chauvet, Guillaume ;
Haziza, David .
SCANDINAVIAN JOURNAL OF STATISTICS, 2016, 43 (03) :683-699
[8]   Large-Scale Machine Learning with Stochastic Gradient Descent [J].
Bottou, Leon .
COMPSTAT'2010: 19TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL STATISTICS, 2010, :177-186
[9]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[10]   Multiple Imputation for Missing Data via Sequential Regression Trees [J].
Burgette, Lane F. ;
Reiter, Jerome P. .
AMERICAN JOURNAL OF EPIDEMIOLOGY, 2010, 172 (09) :1070-1076