A Calderon theorem for the poisson semigroups associated with the Ornstein-Uhlenbeck and Hermite operators

被引:0
|
作者
Flores, Guillermo [1 ]
Viviani, Beatriz [2 ,3 ]
机构
[1] Univ Nacl Cordoba, CIEM FaMAF, Av Medina Allende S-N,Ciudad Univ,CP X5000HUA, Cordoba, Argentina
[2] UNL, CONICET, IMAL, Colectora Ruta Nac 168, RA-3000 Paraje El Pozo, Santa Fe, Argentina
[3] UNL, FIQ, Colectora Ruta Nac 168, RA-3000 Paraje El Pozo, Santa Fe, Argentina
关键词
35J05; 35C15; CONVERGENCE;
D O I
10.1007/s00208-022-02399-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that for solutions of the Ornstein-Uhlenbeck or Hermite equations on the upper half-space, in the Poisson setting, the nontangential limits and nontangetial boundedness are essentially equivalent. Also, we obtain that the Poisson integral associated with the Ornstein-Uhlenbeck or Hermite operators of a Borel measure, satisfies the corresponding equation and has nontangential limit at almost every point.
引用
收藏
页码:329 / 342
页数:14
相关论文
共 3 条
  • [1] The initial heat distribution problem associated with the Ornstein-Uhlenbeck and Hermite equations
    Flores, Guillermo J. J.
    EUROPEAN JOURNAL OF MATHEMATICS, 2023, 9 (02)
  • [2] Mean value formulas for Ornstein-Uhlenbeck and Hermite temperatures
    Flores, Guillermo
    Garrigos, Gustavo
    POSITIVITY, 2020, 24 (03) : 565 - 584
  • [3] Taylor approximation of the solution of age-dependent stochastic delay population equations with Ornstein-Uhlenbeck process and Poisson jumps
    Li, Wenrui
    Zhang, Qimin
    Anke, Meyer-Baese
    Ye, Ming
    Li, Yan
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2020, 17 (03) : 2650 - 2675