A class of weighted Hardy type inequalities in RN

被引:0
作者
Canale, Anna [1 ]
机构
[1] Univ Salerno, Dipartimento Ingn Informaz Elettr & Matemat Appli, Via Giovanni Paolo II,132, I-84084 Salerno, Italy
关键词
Weighted Hardy type inequalities; Kolmogorov operators; Singular potentials; Evolution problems; OPERATORS; SPACES; UNIQUENESS; BOUNDS;
D O I
10.1007/s11587-021-00628-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the paper we prove the weighted Hardy type inequality 1 integral V-RN phi(2)mu(x)dx <= integral(RN) vertical bar del phi vertical bar(2)mu(x)dx + K integral(RN)phi(2)mu(x)dx, (1) for functions. in a weighted Sobolev space H-mu(1), for a wider class of potentials V than inverse square potentials and for weight functions mu of a quite general type. The case mu = 1 is included. To get the result we introduce a generalized vector field method. The estimates apply to evolution problems with Kolmogorov operators Lu = Delta u + del mu/mu center dot del u perturbed by singular potentials.
引用
收藏
页码:619 / 631
页数:13
相关论文
共 50 条
[31]   Weighted Hardy inequalities and Ornstein-Uhlenbeck type operators perturbed by multipolar inverse square potentials [J].
Canale, Anna ;
Pappalardo, Francesco .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 463 (02) :895-909
[32]   WEIGHTED MULTIPOLAR HARDY INEQUALITIES AND EVOLUTION PROBLEMS WITH KOLMOGOROV OPERATORS PERTURBED BY SINGULAR POTENTIALS [J].
Canale, Anna ;
Pappalardo, Francesco ;
Tarantino, Ciro .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2021, 20 (01) :405-425
[33]   Hardy-type inequalities and Pohozaev-type identities for a class of p-degenerate subelliptic operators and applications [J].
Zhang, HQ ;
Niu, PC .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 54 (01) :165-186
[34]   Hardy-Adams Inequalities on H2 x Rn-2 [J].
Ma, Xing ;
Wang, Xumin ;
Yang, Qiaohua .
ADVANCED NONLINEAR STUDIES, 2021, 21 (02) :327-345
[35]   LP measure of growth and higher order Hardy-Sobolev-Morrey inequalities on RN [J].
Rabier, Patrick J. .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2017, 69 (01) :127-151
[36]   HARDY AND RELLICH TYPE INEQUALITIES WITH TWO WEIGHT FUNCTIONS [J].
Ahmetolan, Semra ;
Kombe, Ismail .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2016, 19 (03) :937-948
[37]   On a Hardy Type General Weighted Inequality in Spaces Lp(.) [J].
Mamedov, Farman I. ;
Harman, Aziz .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2010, 66 (04) :565-592
[38]   Local and non-local improved Hardy inequalities with weights [J].
Canale A. .
Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, Rendiconti Lincei Matematica e Applicazioni, 2022, 33 (02) :385-398
[39]   Improved critical Hardy inequality and Leray-Trudinger type inequalities in Carnot groups [J].
Van Hoang Nguyen .
ANNALES FENNICI MATHEMATICI, 2022, 47 (01) :121-138
[40]   Weighted Cebysev-Ostrowski type inequalities [J].
Rafiq, Arif ;
Mir, Nazir Ahmad ;
Ahmad, Farooq .
APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2007, 28 (07) :901-906