A class of weighted Hardy type inequalities in RN

被引:0
|
作者
Canale, Anna [1 ]
机构
[1] Univ Salerno, Dipartimento Ingn Informaz Elettr & Matemat Appli, Via Giovanni Paolo II,132, I-84084 Salerno, Italy
关键词
Weighted Hardy type inequalities; Kolmogorov operators; Singular potentials; Evolution problems; OPERATORS; SPACES; UNIQUENESS; BOUNDS;
D O I
10.1007/s11587-021-00628-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the paper we prove the weighted Hardy type inequality 1 integral V-RN phi(2)mu(x)dx <= integral(RN) vertical bar del phi vertical bar(2)mu(x)dx + K integral(RN)phi(2)mu(x)dx, (1) for functions. in a weighted Sobolev space H-mu(1), for a wider class of potentials V than inverse square potentials and for weight functions mu of a quite general type. The case mu = 1 is included. To get the result we introduce a generalized vector field method. The estimates apply to evolution problems with Kolmogorov operators Lu = Delta u + del mu/mu center dot del u perturbed by singular potentials.
引用
收藏
页码:619 / 631
页数:13
相关论文
共 50 条