Fish Scale for Wearable, Self-Powered TENG

被引:4
|
作者
Zhao, Liwei [1 ]
Han, Jin [1 ]
Zhang, Xing [1 ]
Wang, Chunchang [1 ]
机构
[1] Anhui Univ, Sch Mat Sci & Engn, Lab Dielect Funct Mat, Hefei 230601, Peoples R China
基金
中国国家自然科学基金;
关键词
fish scale; hydrogen bond; collagen; triboelectric effect; triboelectric nanogenerators; TRIBOELECTRIC NANOGENERATOR; ENERGY; CONVERSION;
D O I
10.3390/nano14050463
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Flexible and wearable devices are attracting more and more attention. Herein, we propose a self-powered triboelectric nanogenerator based on the triboelectric effect of fish scales. As the pressure on the nanogenerator increases, the output voltage of the triboelectric nanogenerator increases. The nanogenerator can output a voltage of 7.4 V and a short-circuit current of 0.18 mu A under a pressure of 50 N. The triboelectric effect of fish scales was argued to be related to the lamellar structure composed of collagen fiber bundles. The nanogenerator prepared by fish scales can sensitively perceive human activities such as walking, finger tapping, and elbow bending. Moreover, fish scales are a biomass material with good biocompatibility with the body. The fish-scale nanogenerator is a kind of flexible, wearable, and self-powered triboelectric nanogenerator showing great prospects in healthcare and body information monitoring.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] A novel approach for weak current signal processing of self-powered sensor based on TENG
    Lu, Shan
    Lei, Wenqian
    Wang, Qi
    Liu, Wenqiu
    Li, Kecen
    Yuan, Pengfei
    Yu, Hua
    NANO ENERGY, 2022, 103
  • [32] Progress on Self-Powered Wearable and Implantable Systems Driven by Nanogenerators
    Yang, Lanxin
    Ma, Zhihao
    Tian, Yun
    Meng, Bo
    Peng, Zhengchun
    MICROMACHINES, 2021, 12 (06)
  • [33] Wearable Self-Powered Electrochemical Devices for Continuous Health Management
    Parrilla, Marc
    De Wael, Karolien
    ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (50)
  • [34] Recent Progress of Self-Powered Sensing Systems for Wearable Electronics
    Lou, Zheng
    Li, La
    Wang, Lili
    Shen, Guozhen
    SMALL, 2017, 13 (45)
  • [35] Wearable Thermoelectric Materials and Devices for Self-Powered Electronic Systems
    Jia, Yanhua
    Jiang, Qinglin
    Sun, Hengda
    Liu, Peipei
    Hu, Dehua
    Pei, Yanzhong
    Liu, Weishu
    Crispin, Xavier
    Fabiano, Simone
    Ma, Yuguang
    Cao, Yong
    ADVANCED MATERIALS, 2021, 33 (42)
  • [36] All-in-one self-powered wearable biosensors systems
    Li, Qianying
    Gao, Mingyuan
    Sun, Xueqian
    Wang, Xiaolin
    Chu, Dewei
    Cheng, Wenlong
    Xi, Yi
    Lu, Yuerui
    MATERIALS SCIENCE & ENGINEERING R-REPORTS, 2025, 163
  • [37] Small Size and Low-Cost TENG-Based Self-Powered Vibration Measuring and Alerting System
    Mehamud, Idiris
    Bjorling, Marcus
    Marklund, Par
    Shi, Yijun
    ADVANCED ELECTRONIC MATERIALS, 2023, 9 (06)
  • [38] A stretching-insensitive, self-powered and wearable pressure sensor
    Gao, Fangfang
    Zhao, Xuan
    Zhang, Zheng
    An, Linlin
    Xu, Liangxu
    Xun, Xiaochen
    Zhao, Bin
    Ouyang, Tian
    Zhang, Yue
    Liao, Qingliang
    Wang, Li
    NANO ENERGY, 2022, 91
  • [39] Electrospun PVDF/aromatic HBP of 4th gen based flexible and self-powered TENG for wearable energy harvesting and health monitoring
    Gunasekhar, Ramadasu
    Reza, Mohammad Shamim
    Kim, Kap Jin
    Prabu, Arun Anand
    Kim, Hongdoo
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [40] Self-powered and self-sensing wearable devices from a comfort perspective
    Zou, Rui
    Chen, Hongyu
    Pan, Hongye
    Zhang, Hexiang
    Kong, Lingji
    Zhang, Zutao
    Xiang, Zerui
    Zhi, Jinyi
    Xu, Yongsheng
    DEVICE, 2024, 2 (11):