Improving the performance of practical phase-matching quantum key distribution with advantage distillation

被引:2
作者
Wang, Zhe [1 ,2 ]
Zhang, Chun-Mei [1 ,2 ]
Li, Hong-Wei [3 ]
机构
[1] Nanjing Univ Posts & Telecommun, Inst Quantum Informat & Technol, Nanjing 210003, Peoples R China
[2] State Key Lab Cryptol, POB 5159, Beijing 100878, Peoples R China
[3] SSF IEU, Henan Key Lab Quantum Informat & Cryptog, Zhengzhou 450000, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Phase-matching; Quantum key distribution; Advantage distillation; Decoy-state;
D O I
10.1007/s11128-024-04337-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Phase-matching quantum key distribution (PM-QKD) is a promising protocol that can surpass the linear key-rate bound. Generally, inserting an advantage distillation (AD) step into PM-QKD can improve the secure key rate and transmission distance significantly in the asymptotic case. Here, we investigate the performance of practical PM-QKD systems with AD in the non-asymptotic case. Simulation results show that AD can dramatically improve the performance of practical PM-QKD systems. Moreover, we propose to estimate the information leakage using three mutually unbiased bases, namely X, Y and Z, to further enhance its performance, which demonstrates that using the error rates in X, Y and Z bases to estimate the information leakage can improve the secure key rate at high channel losses and misalignment errors.
引用
收藏
页数:12
相关论文
共 50 条
[31]   Practical round-robin differential-phase-shift quantum key distribution [J].
Zhang, Zhen ;
Yuan, Xiao ;
Cao, Zhu ;
Ma, Xiongfeng .
NEW JOURNAL OF PHYSICS, 2017, 19
[32]   Practical SARG04 quantum key distribution [J].
Ali, Sellami ;
Mohammed, Sellami ;
Chowdhury, M. S. H. ;
Hasan, Aisha A. .
OPTICAL AND QUANTUM ELECTRONICS, 2012, 44 (10-11) :471-482
[33]   Simulation and Modeling approach for Performance Analysis of Practical Quantum Key Distribution [J].
Lopes, Minal ;
Sarwade, Nisha .
2015 ANNUAL IEEE INDIA CONFERENCE (INDICON), 2015,
[34]   The phase matching quantum key distribution protocol with 3-state systems [J].
Li, Zhihui ;
Han, Duo ;
Liu, Chengji ;
Gao, Feifei .
QUANTUM INFORMATION PROCESSING, 2021, 20 (01)
[35]   The phase matching quantum key distribution protocol with 3-state systems [J].
Zhihui Li ;
Duo Han ;
Chengji Liu ;
Feifei Gao .
Quantum Information Processing, 2021, 20
[36]   Quantum hacking: attacking practical quantum key distribution [J].
Qi, Bing ;
Fung, Chi-Hang Fred ;
Zhao, Yi ;
Ma, Xiongfeng ;
Tamaki, Kiyoshi ;
Chen, Christine ;
Lo, Hol-Kwong .
QUANTUM COMMUNICATIONS AND QUANTUM IMAGING V, 2007, 6710
[37]   An improved proposal on the practical quantum key distribution with biased basis [J].
Mao, Chen-Chen ;
Li, Jian ;
Zhu, Jian-Rong ;
Zhang, Chun-Mei ;
Wang, Qin .
QUANTUM INFORMATION PROCESSING, 2017, 16 (10)
[38]   An improved proposal on the practical quantum key distribution with biased basis [J].
Chen-Chen Mao ;
Jian Li ;
Jian-Rong Zhu ;
Chun-Mei Zhang ;
Qin Wang .
Quantum Information Processing, 2017, 16
[39]   Expeditious reconciliation for practical quantum key distribution [J].
Nakassis, A ;
Bienfang, J ;
Williams, C .
QUANTUM INFORMATION AND COMPUTATION II, 2004, 5436 :28-35
[40]   Security of quantum key distribution with imperfect phase randomisation [J].
Curras-Lorenzo, Guillermo ;
Nahar, Shlok ;
Lutkenhaus, Norbert ;
Tamaki, Kiyoshi ;
Curty, Marcos .
QUANTUM SCIENCE AND TECHNOLOGY, 2024, 9 (01)