Phase diagram of the SU(N) antiferromagnet of spin S on a square lattice

被引:1
|
作者
Schwab, Jonas [1 ]
Toldin, Francesco Parisen [2 ,3 ,4 ]
Assaad, Fakher F. [1 ]
机构
[1] Univ Wurzburg, Inst Theoret Phys & Astrophys & Wurzburg Dresden, D-97074 Wurzburg, Germany
[2] Rhein Westfal TH Aachen, Inst Theoret Solid State Phys, Otto Blumenthal Str 26, D-52074 Aachen, Germany
[3] JARA FIT, D-52056 Aachen, Germany
[4] JARA CSD, D-52056 Aachen, Germany
关键词
NONLINEAR SIGMA-MODEL; MONTE-CARLO; GROUND-STATES; VALENCE-BOND; PEIERLS; ORDER;
D O I
10.1103/PhysRevB.108.115151
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We investigate the ground-state phase diagram of an SU(N)-symmetric antiferromagnetic spin model on a square lattice where each site hosts an irreducible representation of SU(N) described by a square Young tableau of N/2 rows and 2S columns. We show that negative sign free fermion Monte Carlo simulations can be carried out for this class of quantum magnets at any S and even values of N. In the large-N limit, the saddle point approximation favors a fourfold degenerate valence bond solid phase. In the large S limit, the semiclassical approximation points to the Neel state. On a line set by N = 8S + 2 in the S versus N phase diagram, we observe a variety of phases proximate to the Neel state. At S = 1/2 and 3/2, we observe the aforementioned fourfold degenerate valence bond solid state. At S = 1, a twofold degenerate spin nematic state in which the C-4 lattice symmetry is broken down to C-2 emerges. Finally, at S = 2 we observe a unique ground state that pertains to a two-dimensional version of the Affleck-Kennedy-Lieb-Tasaki state. For our specific realization, this symmetry-protected topological state is characterized by an SU(18), S = 1/2 boundary state that has a dimerized ground state. These phases that are proximate to the Neel state are consistent with the notion of monopole condensation of the antiferromagnetic order parameter. In particular, one expects spin-disordered states with degeneracy set by mod(4, 2S).
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Low-energy parameters and spin gap of a frustrated spin-s Heisenberg antiferromagnet with s ≤ 3/2 on the honeycomb lattice
    Bishop, R. F.
    Li, P. H. Y.
    19TH INTERNATIONAL CONFERENCE RECENT PROGRESS IN MANY-BODY THEORIES (RPMBT), 2018, 1041
  • [42] Phase diagram of a frustrated quantum antiferromagnet on the honeycomb lattice: Magnetic order versus valence-bond crystal formation
    Albuquerque, A. F.
    Schwandt, D.
    Hetenyi, B.
    Capponi, S.
    Mambrini, M.
    Laeuchli, A. M.
    PHYSICAL REVIEW B, 2011, 84 (02)
  • [43] Magnetic phase diagram of the ferromagnetically stacked triangular Ising antiferromagnet
    Plumer, ML
    Mailhot, A
    PHYSICA A, 1995, 222 (1-4): : 437 - 449
  • [44] Phase Diagram of Antiferromagnet Film Sandwiches Between Ferromagnetic Surfaces
    Belmamoun, Y.
    Ez-Zahraouy, H.
    Kerouad, M.
    JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM, 2012, 25 (02) : 463 - 468
  • [45] Phase transitions in the frustrated Ising model on the square lattice
    Jin, Songbo
    Sen, Arnab
    Guo, Wenan
    Sandvik, Anders W.
    PHYSICAL REVIEW B, 2013, 87 (14)
  • [46] Phase diagram and thermodynamic properties of the frustrated ferro-antiferromagnetic spin system on the octahedral lattice
    Jurcisinova, E.
    Jurcisin, M.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2022, 603
  • [47] Ground-state phase diagram of the spin-1/2 square-lattice J1-J2 model with plaquette structure
    Goetze, O.
    Krueger, S. E.
    Fleck, F.
    Schulenburg, J.
    Richter, J.
    PHYSICAL REVIEW B, 2012, 85 (22)
  • [48] Nematicity and fractional magnetization plateaus induced by spin-lattice coupling in the classical kagome-lattice Heisenberg antiferromagnet
    Gen, Masaki
    Suwa, Hidemaro
    PHYSICAL REVIEW B, 2022, 105 (17)
  • [49] Spatially anisotropic S=1 square-lattice antiferromagnet with single-ion anisotropy realized in a Ni(II) pyrazine-n, n'-dioxide coordination polymer
    Manson, Jamie L.
    Pajerowski, Daniel M.
    Donovan, Jeffrey M.
    Twamley, Brendan
    Goddard, Paul A.
    Johnson, Roger
    Bendix, Jesper
    Singleton, John
    Lancaster, Tom
    Blundell, Stephen J.
    Herbrych, Jacek
    Baker, Peter J.
    Steele, Andrew J.
    Pratt, Francis L.
    Franke-Chaudet, Isabel
    McDonald, Ross D.
    Plonczak, Alex
    Manuel, Pascal
    PHYSICAL REVIEW B, 2023, 108 (09)
  • [50] The three-state square-lattice Potts antiferromagnet at zero temperature
    Salas, J
    Sokal, AD
    JOURNAL OF STATISTICAL PHYSICS, 1998, 92 (5-6) : 729 - 753