Phase diagram of the SU(N) antiferromagnet of spin S on a square lattice

被引:1
|
作者
Schwab, Jonas [1 ]
Toldin, Francesco Parisen [2 ,3 ,4 ]
Assaad, Fakher F. [1 ]
机构
[1] Univ Wurzburg, Inst Theoret Phys & Astrophys & Wurzburg Dresden, D-97074 Wurzburg, Germany
[2] Rhein Westfal TH Aachen, Inst Theoret Solid State Phys, Otto Blumenthal Str 26, D-52074 Aachen, Germany
[3] JARA FIT, D-52056 Aachen, Germany
[4] JARA CSD, D-52056 Aachen, Germany
关键词
NONLINEAR SIGMA-MODEL; MONTE-CARLO; GROUND-STATES; VALENCE-BOND; PEIERLS; ORDER;
D O I
10.1103/PhysRevB.108.115151
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We investigate the ground-state phase diagram of an SU(N)-symmetric antiferromagnetic spin model on a square lattice where each site hosts an irreducible representation of SU(N) described by a square Young tableau of N/2 rows and 2S columns. We show that negative sign free fermion Monte Carlo simulations can be carried out for this class of quantum magnets at any S and even values of N. In the large-N limit, the saddle point approximation favors a fourfold degenerate valence bond solid phase. In the large S limit, the semiclassical approximation points to the Neel state. On a line set by N = 8S + 2 in the S versus N phase diagram, we observe a variety of phases proximate to the Neel state. At S = 1/2 and 3/2, we observe the aforementioned fourfold degenerate valence bond solid state. At S = 1, a twofold degenerate spin nematic state in which the C-4 lattice symmetry is broken down to C-2 emerges. Finally, at S = 2 we observe a unique ground state that pertains to a two-dimensional version of the Affleck-Kennedy-Lieb-Tasaki state. For our specific realization, this symmetry-protected topological state is characterized by an SU(18), S = 1/2 boundary state that has a dimerized ground state. These phases that are proximate to the Neel state are consistent with the notion of monopole condensation of the antiferromagnetic order parameter. In particular, one expects spin-disordered states with degeneracy set by mod(4, 2S).
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Systematic construction of spin liquids on the square lattice from tensor networks with SU(2) symmetry
    Mambrini, Matthieu
    Orus, Roman
    Poilblanc, Didier
    PHYSICAL REVIEW B, 2016, 94 (20)
  • [22] Quantitative description of long-range order in the spin-12 XXZ antiferromagnet on the square lattice
    Caci, Nils
    Hering, Dag-Bjoern
    Walther, Matthias R.
    Schmidt, Kai P.
    Wessel, Stefan
    Uhrig, Goetz S.
    PHYSICAL REVIEW B, 2024, 110 (05)
  • [23] Magnetization Process of the Spin-S Kagome-Lattice Heisenberg Antiferromagnet
    Nakano, Hiroki
    Sakai, Toru
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2015, 84 (06)
  • [24] Frustrated Heisenberg antiferromagnet on the honeycomb lattice with spin quantum number s ≥ 1
    Li, P. H. Y.
    Bishop, R. F.
    Campbell, C. E.
    18TH INTERNATIONAL CONFERENCE ON RECENT PROGRESS IN MANY-BODY THEORIES (MBT18), 2016, 702
  • [25] Phase diagram and magnetic excitations of,11-,13 Heisenberg model on the square lattice
    Wu, Muwei
    Gong, Shou-Shu
    Yao, Dao-Xin
    Wu, Han-Qing
    PHYSICAL REVIEW B, 2022, 106 (12)
  • [26] Phase diagram of a square lattice model of XY spins with direction-dependent interactions
    Zhang, Fan
    Guo, Wenan
    Kaul, Ribhu K.
    PHYSICAL REVIEW B, 2024, 109 (19)
  • [27] Phase diagram of a distorted kagome antiferromagnet and application to Y-kapellasite
    Hering, Max
    Ferrari, Francesco
    Razpopov, Aleksandar
    Mazin, Igor I.
    Valenti, Roser
    Jeschke, Harald O.
    Reuther, Johannes
    NPJ COMPUTATIONAL MATERIALS, 2022, 8 (01)
  • [28] Classical phase diagram of the stuffed honeycomb lattice
    Sahoo, Jyotisman
    Kochkov, Dmitrii
    Clark, Bryan K.
    Flint, Rebecca
    PHYSICAL REVIEW B, 2018, 98 (13)
  • [29] Quantum phase transitions in bilayer SU(N) antiferromagnets
    Kaul, Ribhu K.
    PHYSICAL REVIEW B, 2012, 85 (18):
  • [30] Phase diagram of spin-1/2 quantum Heisenberg J1-J2 antiferromagnet on the body-centered-cubic lattice in random phase approximation
    Pantic, Milan R.
    Kapor, Darko V.
    Radosevic, Slobodan M.
    Mali, Petar M.
    SOLID STATE COMMUNICATIONS, 2014, 182 : 55 - 58