Phase diagram of the SU(N) antiferromagnet of spin S on a square lattice

被引:1
|
作者
Schwab, Jonas [1 ]
Toldin, Francesco Parisen [2 ,3 ,4 ]
Assaad, Fakher F. [1 ]
机构
[1] Univ Wurzburg, Inst Theoret Phys & Astrophys & Wurzburg Dresden, D-97074 Wurzburg, Germany
[2] Rhein Westfal TH Aachen, Inst Theoret Solid State Phys, Otto Blumenthal Str 26, D-52074 Aachen, Germany
[3] JARA FIT, D-52056 Aachen, Germany
[4] JARA CSD, D-52056 Aachen, Germany
关键词
NONLINEAR SIGMA-MODEL; MONTE-CARLO; GROUND-STATES; VALENCE-BOND; PEIERLS; ORDER;
D O I
10.1103/PhysRevB.108.115151
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We investigate the ground-state phase diagram of an SU(N)-symmetric antiferromagnetic spin model on a square lattice where each site hosts an irreducible representation of SU(N) described by a square Young tableau of N/2 rows and 2S columns. We show that negative sign free fermion Monte Carlo simulations can be carried out for this class of quantum magnets at any S and even values of N. In the large-N limit, the saddle point approximation favors a fourfold degenerate valence bond solid phase. In the large S limit, the semiclassical approximation points to the Neel state. On a line set by N = 8S + 2 in the S versus N phase diagram, we observe a variety of phases proximate to the Neel state. At S = 1/2 and 3/2, we observe the aforementioned fourfold degenerate valence bond solid state. At S = 1, a twofold degenerate spin nematic state in which the C-4 lattice symmetry is broken down to C-2 emerges. Finally, at S = 2 we observe a unique ground state that pertains to a two-dimensional version of the Affleck-Kennedy-Lieb-Tasaki state. For our specific realization, this symmetry-protected topological state is characterized by an SU(18), S = 1/2 boundary state that has a dimerized ground state. These phases that are proximate to the Neel state are consistent with the notion of monopole condensation of the antiferromagnetic order parameter. In particular, one expects spin-disordered states with degeneracy set by mod(4, 2S).
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Phase diagram of the frustrated spatially-anisotropic S=1 antiferromagnet on a square lattice
    Jiang, H. C.
    Kruger, F.
    Moore, J. E.
    Sheng, D. N.
    Zaanen, J.
    Weng, Z. Y.
    PHYSICAL REVIEW B, 2009, 79 (17)
  • [2] Phase diagram of the chiral SU(3) antiferromagnet on the kagome lattice
    Xu, Yi
    Capponi, Sylvain
    Chen, Ji-Yao
    Vanderstraeten, Laurens
    Hasik, Juraj
    Nevidomskyy, Andriy H.
    Mambrini, Matthieu
    Penc, Karlo
    Poilblanc, Didier
    PHYSICAL REVIEW B, 2023, 108 (19)
  • [3] Phase diagram and dynamics of the SU(N) symmetric Kondo lattice model
    Raczkowski, Marcin
    Assaad, Fakher F.
    PHYSICAL REVIEW RESEARCH, 2020, 2 (01):
  • [5] Deconfined criticality and a gapless Z2 spin liquid in the square-lattice antiferromagnet
    Shackleton, Henry
    Thomson, Alex
    Sachdev, Subir
    PHYSICAL REVIEW B, 2021, 104 (04)
  • [6] Phase transitions in a frustrated Ising antiferromagnet on a square lattice
    Bobak, A.
    Lucivjansky, T.
    Borovsky, M.
    Zukovic, M.
    PHYSICAL REVIEW E, 2015, 91 (03):
  • [7] Phase diagram of the Hubbard model on a square lattice: A cluster slave-spin study
    Zeng, Ming-Huan
    Ma, Tianxing
    Wang, Y-J
    PHYSICAL REVIEW B, 2021, 104 (09)
  • [8] Phase diagram of the lattice SU(2) Higgs model
    Bonati, C.
    Cossu, G.
    D'Elia, M.
    Di Giacomo, A.
    NUCLEAR PHYSICS B, 2010, 828 (1-2) : 390 - 403
  • [9] The ground state phase diagram of the quantum J1-J2 spin-1/2 Heisenberg antiferromagnet on an anisotropic square lattice
    Mendonca, Griffith
    Lapa, Rodrigo
    de Sousa, J. Ricardo
    Neto, Minos A.
    Majumdar, Kingshuk
    Datta, Trinanjan
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2010,
  • [10] Phase diagram of a diluted triangular lattice Ising antiferromagnet in a field
    Zukovic, M.
    Borovsky, M.
    Bobak, A.
    PHYSICS LETTERS A, 2010, 374 (41) : 4260 - 4264