The skew spectral radius and skew Randić spectral radius of general random oriented graphs

被引:0
作者
Hu, Dan [1 ]
Broersma, Hajo [2 ]
Hou, Jiangyou [3 ]
Zhang, Shenggui [4 ,5 ]
机构
[1] Xian Univ Technol, Sch Sci, Xian 710048, Shaanxi, Peoples R China
[2] Univ Twente, Fac EEMCS, POB 217, NL-7500 AE Enschede, Netherlands
[3] Northwest Univ, Sch Math, Xian 710127, Shaanxi, Peoples R China
[4] Northwestern Polytech Univ, Sch Math & Stat, Xian 710129, Shaanxi, Peoples R China
[5] Northwestern Polytech Univ, Xian Budapest Joint Res Ctr Combinator, Xian 710129, Shaanxi, Peoples R China
关键词
General random oriented graphs; Random skew adjacency matrix; Random skew Randic matrix; Skew spectral radius; Skew Randic spectral radius; EIGENVALUE; ADJACENCY; MATRICES; ENERGY; INDEX;
D O I
10.1016/j.laa.2024.01.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a simple connected graph on n vertices, and let G sigma be an orientation of G with skew adjacency matrix S(G sigma). Let di be the degree of the vertex vi in G. The skew Randic matrix of G sigma is the n x n real skew symmetric matrix RS(G sigma) = [(RS)ij], where (RS)ij = -(RS)ji = (didj)- 2 if (vi, vj) is 1 an arc of G sigma, and (RS)ij = (RS)ji = 0 otherwise. The skew spectral radius rho S(G sigma) and the skew Randic spectral radius rho RS (G sigma) of G sigma are defined as the spectral radius of S(G sigma) and RS(G sigma) respectively. In this paper we give upper bounds for the skew spectral radius and skew Randic spectral radius of general random oriented graphs. (c) 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http:// creativecommons .org /licenses /by /4 .0/).
引用
收藏
页码:125 / 137
页数:13
相关论文
共 50 条
  • [41] On the signless Laplacian spectral radius of graphs with cut vertices
    Zhu, Bao-Xuan
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 433 (05) : 928 - 933
  • [42] The Laplacian spectral radius of tricyclic graphs with a given girth
    Wang, Chengyong
    Li, Shuchao
    Yan, Lixia
    UTILITAS MATHEMATICA, 2013, 92 : 33 - 46
  • [43] On the spectral radius of unicyclic graphs with fixed maximum degree
    Yuan, Xi-Ying
    Shan, Hai-Ying
    Wu, Bao-Feng
    ARS COMBINATORIA, 2011, 102 : 21 - 31
  • [44] Maximum degree and spectral radius of graphs in terms of size
    Wang, Zhiwen
    Guo, Ji-Ming
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2024, 59 (01) : 213 - 224
  • [45] An improved upper bound for the Laplacian spectral radius of graphs
    Lu, Mei
    Liu, Huiqing
    Tian, Feng
    DISCRETE MATHEMATICS, 2009, 309 (21) : 6318 - 6321
  • [46] The Laplacian spectral radius of graphs with given matching number
    Feng, Lihua
    ARS COMBINATORIA, 2010, 96 : 257 - 262
  • [47] Unbalanced signed graphs with extremal spectral radius or index
    Brunetti, Maurizio
    Stanic, Zoran
    COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (03)
  • [48] Bounds for the spectral radius of the Aa-matrix of graphs
    Alhevaz, Abdollah
    Baghipur, Maryam
    Ganie, Hilal Ahmad
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024, 55 (01) : 298 - 309
  • [49] CHROMATIC NUMBER AND SIGNLESS LAPLACIAN SPECTRAL RADIUS OF GRAPHS
    Oboudi, Mohammad Reza
    TRANSACTIONS ON COMBINATORICS, 2022, 11 (04) : 327 - 334
  • [50] The distance spectral radius of graphs with given independence number
    Lin, Huiqiu
    Feng, Lihua
    ARS COMBINATORIA, 2015, 121 : 113 - 123