共 50 条
The skew spectral radius and skew Randić spectral radius of general random oriented graphs
被引:0
|作者:
Hu, Dan
[1
]
Broersma, Hajo
[2
]
Hou, Jiangyou
[3
]
Zhang, Shenggui
[4
,5
]
机构:
[1] Xian Univ Technol, Sch Sci, Xian 710048, Shaanxi, Peoples R China
[2] Univ Twente, Fac EEMCS, POB 217, NL-7500 AE Enschede, Netherlands
[3] Northwest Univ, Sch Math, Xian 710127, Shaanxi, Peoples R China
[4] Northwestern Polytech Univ, Sch Math & Stat, Xian 710129, Shaanxi, Peoples R China
[5] Northwestern Polytech Univ, Xian Budapest Joint Res Ctr Combinator, Xian 710129, Shaanxi, Peoples R China
关键词:
General random oriented graphs;
Random skew adjacency matrix;
Random skew Randic matrix;
Skew spectral radius;
Skew Randic spectral radius;
EIGENVALUE;
ADJACENCY;
MATRICES;
ENERGY;
INDEX;
D O I:
10.1016/j.laa.2024.01.003
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
Let G be a simple connected graph on n vertices, and let G sigma be an orientation of G with skew adjacency matrix S(G sigma). Let di be the degree of the vertex vi in G. The skew Randic matrix of G sigma is the n x n real skew symmetric matrix RS(G sigma) = [(RS)ij], where (RS)ij = -(RS)ji = (didj)- 2 if (vi, vj) is 1 an arc of G sigma, and (RS)ij = (RS)ji = 0 otherwise. The skew spectral radius rho S(G sigma) and the skew Randic spectral radius rho RS (G sigma) of G sigma are defined as the spectral radius of S(G sigma) and RS(G sigma) respectively. In this paper we give upper bounds for the skew spectral radius and skew Randic spectral radius of general random oriented graphs. (c) 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http:// creativecommons .org /licenses /by /4 .0/).
引用
收藏
页码:125 / 137
页数:13
相关论文