The skew spectral radius and skew Randić spectral radius of general random oriented graphs

被引:0
|
作者
Hu, Dan [1 ]
Broersma, Hajo [2 ]
Hou, Jiangyou [3 ]
Zhang, Shenggui [4 ,5 ]
机构
[1] Xian Univ Technol, Sch Sci, Xian 710048, Shaanxi, Peoples R China
[2] Univ Twente, Fac EEMCS, POB 217, NL-7500 AE Enschede, Netherlands
[3] Northwest Univ, Sch Math, Xian 710127, Shaanxi, Peoples R China
[4] Northwestern Polytech Univ, Sch Math & Stat, Xian 710129, Shaanxi, Peoples R China
[5] Northwestern Polytech Univ, Xian Budapest Joint Res Ctr Combinator, Xian 710129, Shaanxi, Peoples R China
关键词
General random oriented graphs; Random skew adjacency matrix; Random skew Randic matrix; Skew spectral radius; Skew Randic spectral radius; EIGENVALUE; ADJACENCY; MATRICES; ENERGY; INDEX;
D O I
10.1016/j.laa.2024.01.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a simple connected graph on n vertices, and let G sigma be an orientation of G with skew adjacency matrix S(G sigma). Let di be the degree of the vertex vi in G. The skew Randic matrix of G sigma is the n x n real skew symmetric matrix RS(G sigma) = [(RS)ij], where (RS)ij = -(RS)ji = (didj)- 2 if (vi, vj) is 1 an arc of G sigma, and (RS)ij = (RS)ji = 0 otherwise. The skew spectral radius rho S(G sigma) and the skew Randic spectral radius rho RS (G sigma) of G sigma are defined as the spectral radius of S(G sigma) and RS(G sigma) respectively. In this paper we give upper bounds for the skew spectral radius and skew Randic spectral radius of general random oriented graphs. (c) 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http:// creativecommons .org /licenses /by /4 .0/).
引用
收藏
页码:125 / 137
页数:13
相关论文
共 50 条
  • [21] On the distance spectral radius of bipartite graphs
    Nath, Milan
    Paul, Somnath
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (05) : 1285 - 1296
  • [22] A function on bounds of the spectral radius of graphs
    Hu, Shengbiao
    ARS COMBINATORIA, 2010, 96 : 115 - 128
  • [23] Extreme Sombor Spectral Radius of Unicyclic Graphs
    Mei, Yinzhen
    Fu, Huifeng
    Miao, Hongli
    Gao, Yubin
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2023, 90 (02) : 513 - 532
  • [24] Further results on the distance spectral radius of graphs
    Du, Zhibin
    Ilic, Aleksandar
    Feng, Lihua
    LINEAR & MULTILINEAR ALGEBRA, 2013, 61 (09) : 1287 - 1301
  • [25] On the Ace-spectral radius of connected graphs
    Alhevaz, Abdollah
    Baghipur, Maryam
    Ganie, Hilal Ahmad
    Das, Kinkar Chandra
    ARS MATHEMATICA CONTEMPORANEA, 2023, 23 (01)
  • [26] Graphs with maximal signless Laplacian spectral radius
    Chang, Ting-Jung
    Tam, Bit-Shun
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (07) : 1708 - 1733
  • [27] On the spectral radius of tricyclic graphs with a maximum matching
    Geng, Xianya
    Li, Shuchao
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (10) : 4043 - 4051
  • [28] The oriented bicyclic graphs whose skew-spectral radii do not exceed 2
    Guang-Hui Xu
    Shi-Cai Gong
    Journal of Inequalities and Applications, 2015
  • [29] The Laplacian spectral radius of graphs with given connectivity
    Feng, Lihua
    Ilic, Aleksandar
    ARS COMBINATORIA, 2012, 104 : 489 - 495
  • [30] The oriented bicyclic graphs whose skew-spectral radii do not exceed 2
    Xu, Guang-Hui
    Gong, Shi-Cai
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015, : 1 - 11