Molecular mechanism of Spatholobi Caulis treatment for cholangiocarcinoma based on network pharmacology, molecular docking, and molecular dynamics simulation

被引:4
|
作者
Chen, Xu [1 ]
Sun, Bo [1 ]
Zeng, Jia [2 ]
Yu, Zhangtao [1 ]
Liu, Jie [3 ]
Tan, Zhiguo [3 ]
Li, Yuhang [1 ]
Peng, Chuang [1 ]
机构
[1] Hunan Normal Univ, Hunan Prov Peoples Hosp, Dept Hepatobiliary Surg, Affiliated Hosp 1, 61 Jiefang West Rd, Changsha 410005, Hunan, Peoples R China
[2] Hunan Univ Chinese Med, Affiliated Hosp 1, Changsha 410007, Hunan, Peoples R China
[3] Lanzhou Univ, Sch Clin Med 1, Lanzhou 730000, Gansu, Peoples R China
关键词
Spatholobi Caulis; Cholangiocarcinoma; PI3K-AKT signaling pathway; Epithelial-mesenchymal transformation; Cisplatin; Luteolin;
D O I
10.1007/s00210-024-02985-0
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Cholangiocarcinoma (CCA) is a type of malignant tumor originating from the intrahepatic, periportal, or distal biliary system. The treatment means for CCA is limited, and its prognosis is poor. Spatholobi Caulis (SC) is reported to have effects on anti-inflammatory and anti-tumor, but its role in CCA is unclear. First, the potential molecular mechanism of SC for CCA treatment was explored based on network pharmacology, and the core targets were verified by molecular docking and molecular dynamics simulation. Then, we explored the inhibitory effect of SC on the malignant biological behavior of CCA in vitro and in vivo and also explored the related signaling pathways. The effect of combination therapy of SC and cisplatin (DDP) in CCA was also explored. Finally, we conducted a network pharmacological study and simple experimental verification on luteolin, one of the main components of SC. Network pharmacology analysis showed that the core targets of SC on CCA were AKT1, CASP3, MYC, TP53, and VEGFA. Molecular docking and molecular dynamics simulation indicated a good combination between the core target protein and the corresponding active ingredients. In vitro, SC inhibited proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) of CCA cells. In vivo experiments, the results were consistent with in vitro experiments, and there was no significant hepatorenal toxicity of SC at our dosage. Based on KEGG enrichment analysis, we found PI3K/AKT signaling pathway might be the main signaling pathway of SC action on CCA by using AKT agonist SC79. To explore whether SC was related to the chemotherapy sensitivity of CCA, we found that SC combined with DDP could more effectively inhibit the progression of cholangiocarcinoma. Finally, we found luteolin may inhibit the proliferation and invasion of CCA cells. Our study demonstrates for the first time that SC inhibits the progression of CCA by suppressing EMT through the PI3K-AKT signaling pathway, and SC could enhance the effectiveness of cisplatin therapy for CCA.
引用
收藏
页码:5789 / 5806
页数:18
相关论文
共 50 条
  • [31] Molecular mechanism of Acanthopanax senticosus in the treatment of Alzheimer's disease based on network pharmacology and molecular docking
    Kuang, Feng
    Xiang, Tao
    MOLECULAR DIVERSITY, 2023, 27 (06) : 2849 - 2865
  • [32] Revealing the molecular mechanism of baohuoside I for the treatment of breast cancer based on network pharmacology and molecular docking
    Mu, Junjie
    Li, Ying
    Chen, Qiuxiong
    Xiao, Yujie
    Hu, Min
    He, Ziyue
    Zeng, Jun
    Ding, Yiling
    Song, Pengyang
    He, Xiao
    Yang, Xian
    Zhang, Xue
    JOURNAL OF ETHNOPHARMACOLOGY, 2025, 337
  • [33] Molecular mechanism of celastrol in the treatment of systemic lupus erythematosus based on network pharmacology and molecular docking technology
    Song Xinqiang
    Zhang Yu
    Yang Ningning
    Dai Erqin
    Wang Lei
    Du Hongtao
    LIFE SCIENCES, 2020, 240
  • [34] Potential Molecular Mechanism of Yishen Capsule in the Treatment of Diabetic Nephropathy Based on Network Pharmacology and Molecular Docking
    Hu, Yaling
    Liu, Shuang
    Liu, Wenyuan
    Zhang, Ziyuan
    Liu, Yuxiang
    Li, Sufen
    Sun, Dalin
    Zhang, Guang
    Fang, Jingai
    DIABETES METABOLIC SYNDROME AND OBESITY-TARGETS AND THERAPY, 2022, 15 : 943 - 962
  • [35] Molecular Mechanism of Salvia miltiorrhiza in the Treatment of Colorectal Cancer Based on Network Pharmacology and Molecular Docking Technology
    Jiang, Yi-Ling
    Xun, Yi
    DRUG DESIGN DEVELOPMENT AND THERAPY, 2024, 18 : 425 - 441
  • [36] Investigation of the molecular mechanism of Xiangsha Liujun Pill in the treatment of gastritis based on network pharmacology and molecular docking
    Wei, Jiaen
    Li, Zhengxiu
    Tang, Tingting
    Yu, Ruolan
    Cao, Xuejing
    Liu, Yong
    Huang, Zunnan
    Research Square, 2023,
  • [37] Molecular mechanism of Acanthopanax senticosus in the treatment of Alzheimer’s disease based on network pharmacology and molecular docking
    Feng Kuang
    Tao Xiang
    Molecular Diversity, 2023, 27 : 2849 - 2865
  • [38] Molecular mechanism of Ferula asafoetida for the treatment of asthma: Network pharmacology and molecular docking approach
    Qasim, Muhammad
    Abdullah, Muhammad
    Ashfaq, Usman Ali
    Noor, Fatima
    Nahid, Nazia
    Alzamami, Ahmad
    Alturki, Norah A.
    Khurshid, Mohsin
    SAUDI JOURNAL OF BIOLOGICAL SCIENCES, 2023, 30 (02)
  • [39] Mechanism of icariin for the treatment of osteoarthritis based on network pharmacology and molecular docking method
    Gu, Jin-Yu
    Li, Fa-Jie
    Hou, Cheng-Zhi
    Zhang, Yue
    Bai, Zi-Xing
    Zhang, Qing
    AMERICAN JOURNAL OF TRANSLATIONAL RESEARCH, 2023, 15 (08): : 5084 - 5084
  • [40] Mechanism of glycitein in the treatment of colon cancer based on network pharmacology and molecular docking
    Xiang, Tao
    Jin, Weibiao
    LIFESTYLE GENOMICS, 2023, 16 (01) : 1 - 10