Pre-Harvest Corn Grain Moisture Estimation Using Aerial Multispectral Imagery and Machine Learning Techniques

被引:2
|
作者
Jjagwe, Pius [1 ,2 ]
Chandel, Abhilash K. [1 ,2 ]
Langston, David [1 ]
机构
[1] Virginia Tech Tidewater Agr Res & Extens Ctr, Suffolk, VA 23437 USA
[2] Virginia Tech, Dept Biol Syst Engn, Blacksburg, VA 24061 USA
关键词
aerial multispectral sensing; corn grain moisture; machine learning; precision harvest; LEAF CHLOROPHYLL CONTENT; VEGETATION INDEX; REFLECTANCE; QUANTIFICATION; REGRESSION; BIOMASS; MODELS; YIELD; COLOR;
D O I
10.3390/land12122188
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Corn grain moisture (CGM) is critical to estimate grain maturity status and schedule harvest. Traditional methods for determining CGM range from manual scouting, destructive laboratory analyses, and weather-based dry down estimates. Such methods are either time consuming, expensive, spatially inaccurate, or subjective, therefore they are prone to errors or limitations. Realizing that precision harvest management could be critical for extracting the maximum crop value, this study evaluates the estimation of CGM at a pre-harvest stage using high-resolution (1.3 cm/pixel) multispectral imagery and machine learning techniques. Aerial imagery data were collected in the 2022 cropping season over 116 experimental corn planted plots. A total of 24 vegetation indices (VIs) were derived from imagery data along with reflectance (REF) information in the blue, green, red, red-edge, and near-infrared imaging spectrum that was initially evaluated for inter-correlations as well as subject to principal component analysis (PCA). VIs including the Green Normalized Difference Index (GNDVI), Green Chlorophyll Index (GCI), Infrared Percentage Vegetation Index (IPVI), Simple Ratio Index (SR), Normalized Difference Red-Edge Index (NDRE), and Visible Atmospherically Resistant Index (VARI) had the highest correlations with CGM (r: 0.68-0.80). Next, two state-of-the-art statistical and four machine learning (ML) models (Stepwise Linear Regression (SLR), Partial Least Squares Regression (PLSR), Artificial Neural Network (ANN), Support Vector Machine (SVM), Random Forest (RF), and K-nearest neighbor (KNN)), and their 120 derivates (six ML models x two input groups (REFs and REFs+VIs) x 10 train-test data split ratios (starting 50:50)) were formulated and evaluated for CGM estimation. The CGM estimation accuracy was impacted by the ML model and train-test data split ratio. However, the impact was not significant for the input groups. For validation over the train and entire dataset, RF performed the best at a 95:5 split ratio, and REFs+VIs as the input variables (rtrain: 0.97, rRMSEtrain: 1.17%, rentire: 0.95, rRMSEentire: 1.37%). However, when validated for the test dataset, an increase in the train-test split ratio decreased the performances of the other ML models where SVM performed the best at a 50:50 split ratio (r = 0.70, rRMSE = 2.58%) and with REFs+VIs as the input variables. The 95:5 train-test ratio showed the best performance across all the models, which may be a suitable ratio for relatively smaller or medium-sized datasets. RF was identified to be the most stable and consistent ML model (r: 0.95, rRMSE: 1.37%). Findings in the study indicate that the integration of aerial remote sensing and ML-based data-run techniques could be useful for reliably predicting CGM at the pre-harvest stage, and developing precision corn harvest scheduling and management strategies for the growers.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Estimation of nitrogen status of paddy rice at vegetative phase using unmanned aerial vehicle based multispectral imagery
    Wang, Yi-Ping
    Chang, Yu-Chieh
    Shen, Yuan
    PRECISION AGRICULTURE, 2022, 23 (01) : 1 - 17
  • [32] Estimation of Soil Characteristics from Multispectral Sentinel-3 Imagery and DEM Derivatives Using Machine Learning
    Piccoli, Flavio
    Barbato, Mirko Paolo
    Peracchi, Marco
    Napoletano, Paolo
    SENSORS, 2023, 23 (18)
  • [33] Estimation of Crop Biomass and Leaf Area Index from Multitemporal and Multispectral Imagery Using Machine Learning Approaches
    Gahrouei, Omid
    McNairn, Heather
    Hosseini, Mehdi
    Homayouni, Saeid
    CANADIAN JOURNAL OF REMOTE SENSING, 2020, 46 (01) : 84 - 99
  • [34] Potato Leaf Area Index Estimation Using Multi-Sensor Unmanned Aerial Vehicle (UAV) Imagery and Machine Learning
    Yu, Tong
    Zhou, Jing
    Fan, Jiahao
    Wang, Yi
    Zhang, Zhou
    REMOTE SENSING, 2023, 15 (16)
  • [35] Prediction of morpho-physiological traits in sugarcane using aerial imagery and machine learning
    Poudyal, Chiranjibi
    Sandhu, Hardev
    Ampatzidis, Yiannis
    Odero, Dennis Calvin
    Arbelo, Orlando Coto
    Cherry, Ronald H.
    Costa, Lucas Fideles
    SMART AGRICULTURAL TECHNOLOGY, 2023, 3
  • [36] Prediction of Antioxidant Activity of Cherry Fruits from UAS Multispectral Imagery Using Machine Learning
    Karydas, Christos
    Iatrou, Miltiadis
    Kouretas, Dimitrios
    Patouna, Anastasia
    Iatrou, George
    Lazos, Nikolaos
    Gewehr, Sandra
    Tseni, Xanthi
    Tekos, Fotis
    Zartaloudis, Zois
    Mainos, Evangelos
    Mourelatos, Spiros
    ANTIOXIDANTS, 2020, 9 (02)
  • [37] Surveying Nearshore Bathymetry Using Multispectral and Hyperspectral Satellite Imagery and Machine Learning
    Hartmann, David
    Gravey, Mathieu
    Price, Timothy David
    Nijland, Wiebe
    de Jong, Steven Michael
    REMOTE SENSING, 2025, 17 (02)
  • [38] Pumice Raft Detection Using Machine-Learning on Multispectral Satellite Imagery
    Zheng, Maggie
    Mittal, Tushar
    Fauria, Kristen E.
    Subramaniam, Ajit
    Jutzeler, Martin
    FRONTIERS IN EARTH SCIENCE, 2022, 10
  • [39] Estimation of Air Pollution in Delhi Using Machine Learning Techniques
    Srivastava, Chavi
    Singh, Shyamli
    Singh, Amit Prakash
    2018 INTERNATIONAL CONFERENCE ON COMPUTING, POWER AND COMMUNICATION TECHNOLOGIES (GUCON), 2018, : 297 - 302
  • [40] Corn Grain Yield Prediction Using UAV-based High Spatiotemporal Resolution Multispectral Imagery
    Killeen, Patrick
    Kiringa, Iluju
    Yeap, Tet
    2022 IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS, ICDMW, 2022, : 1054 - 1062