Modeling the Deposition of Thin Films of Transition Metal Nitrides

被引:1
|
作者
Goncharov, Alexander [1 ,2 ]
Yunda, Andrii [3 ]
Kolinko, Ivan [2 ]
Kornich, Grygoriy [4 ,5 ]
Shyrokorad, Dmytro [4 ]
机构
[1] Slovak Univ Technol Bratislava, Inst Mat Sci, Jana Bottu 25, Trnava 91724, Slovakia
[2] Sumy State Univ, Dept Complex Syst Modeling, UA-40007 Sumy, Ukraine
[3] Natl Acad Sci Ukraine, Inst Appl Phys, UA-40000 Sumy, Ukraine
[4] Natl Univ Zaporizhzhia Polytech, Comp Sci & Technol Fac, 64, Zhukovskogo Str, UA-69063 Zaporizhzhia, Ukraine
[5] Univ Wurzburg, Fac Phys & Astron EP3, D-97074 Wurzburg, Germany
关键词
nitrides; thin films; Monte Carlo; molecular dynamics; TEMPERATURE-ACCELERATED DYNAMICS; MOLECULAR-DYNAMICS; INTERATOMIC POTENTIALS; SIMULATION; GROWTH; CONSTRUCTION; EVOLUTION; COATINGS; SURFACE; LAYER;
D O I
10.3390/coatings13122035
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper presents an overview of studies dedicated to the atomic-discrete modeling of the growth process of film coatings that comprise mononitrides of transition and post-transition metals. The main modeling approaches are the Monte Carlo and molecular dynamics methods as well as their combinations with analytical contributions. The molecular dynamics method is more accurate compared to the Monte Carlo method but has disadvantages related to the time scale. Given this, the adoption of accelerated molecular dynamics methods is viewed as a promising approach for directly simulating the specified processes. These methods can be implemented just after the relaxation of the collision stage in the area of the deposited particle between the deposition events to simulate the realistic density of the incident beam and accompanied long-term mass transfer processes.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Mass transport properties of quasiharmonic vs. anharmonic transition-metal nitrides
    Sangiovanni, D. G.
    THIN SOLID FILMS, 2019, 688
  • [32] Controlled Nanostructuring of Thin Films by Oblique Angle Deposition
    Trushin, O. S.
    Fattakhov, I. S.
    Chebokhin, M. M.
    Popov, A. A.
    Mazaletskiy, L. A.
    JOURNAL OF SURFACE INVESTIGATION, 2024, 18 (06): : 1319 - 1325
  • [33] Plasmonic and phononic properties of epitaxial conductive transition metal nitrides
    Gioti, M.
    Arvanitidis, J.
    Christofilos, D.
    Chaudhuri, K.
    Zorba, T.
    Abadias, G.
    Gall, D.
    Shalaev, V. M.
    Boltasseva, A.
    Patsalas, P.
    JOURNAL OF OPTICS, 2020, 22 (08)
  • [34] Metal Organic Chemical Vapor Deposition of nickel oxide thin films for wide band gap device technology
    Lo Nigro, Raffaella
    Battiato, Sergio
    Greco, Giuseppe
    Fiorenza, Patrick
    Roccaforte, Fabrizio
    Malandrino, Graziella
    THIN SOLID FILMS, 2014, 563 : 50 - 55
  • [35] Effect of processing conditions on residual stress in sputtered transition metal nitrides (TiN, ZrN and TaN): Experiments and modeling
    Rao, Zhaoxia
    Su, Tong
    Koenig, Thomas
    Thompson, Gregory B.
    Depla, Diederik
    Chason, Eric
    SURFACE & COATINGS TECHNOLOGY, 2022, 447
  • [36] Deposition and characterisation of vanadium oxide thin films: Linking single crystal and supported catalyst
    Poelman, H.
    Silversmit, G.
    Poelman, D.
    Marin, G. B.
    Sels, B. S.
    CATALYSIS TODAY, 2009, 142 (3-4) : 125 - 131
  • [37] Thin films of metal-organic frameworks
    Zacher, Denise
    Shekhah, Osama
    Woell, Christof
    Fischer, Roland A.
    CHEMICAL SOCIETY REVIEWS, 2009, 38 (05) : 1418 - 1429
  • [38] Chemical vapor deposition of graphene on thin-metal films
    Xu, Shuaishuai
    Zhang, Lipeng
    Wang, Bin
    Ruoff, Rodney S.
    CELL REPORTS PHYSICAL SCIENCE, 2021, 2 (03):
  • [39] Deposition of Stainless Steel Thin Films: An Electron Beam Physical Vapour Deposition Approach
    Ali, Naser
    Teixeira, Joao A.
    Addali, Abdulmajid
    Saeed, Maryam
    Al-Zubi, Feras
    Sedaghat, Ahmad
    Bahzad, Husain
    MATERIALS, 2019, 12 (04)
  • [40] Transition Metal Nitrides: A First Principles Study
    Pathak, Ashish
    Singh, A. K.
    HIGH TEMPERATURE MATERIALS AND PROCESSES, 2016, 35 (04) : 389 - 398