FOREST AGB ESTIMATION USING L-BAND POLARIMETRIC SAR FEATURES

被引:0
作者
Wang, Mengjin [1 ]
Marino, Armando [2 ]
Zhang, Wangfei [1 ]
Shi, Jianmin [1 ]
Zhao, Han [1 ]
Ji, Yongjie [3 ]
机构
[1] Southwest Forestry Univ, Coll Forestry, Kunming, Yunnan, Peoples R China
[2] Univ Stirling, Biol & Environm Sci, Stirling FK9 4LA, Scotland
[3] Southwest Forestry Univ, Sch Geog & Ecotourism, Kunming 650224, Yunnan, Peoples R China
来源
IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM | 2023年
基金
中国国家自然科学基金;
关键词
PolSAR; aboveground biomass; L-band;
D O I
10.1109/IGARSS52108.2023.10281619
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Forest biomass plays an essential role in forest carbon reservoir studies, biodiversity protection, forest management, and climate change mitigation actions. Currently, polarisation information shows great potential for reducing saturation problems and improving estimation accuracy. 137 SAR features including backscatter coefficients, texture characteristics and features extracted from H/A/a decomposition and so on 9 decomposition methods were extracted for L-band airborne PolSAR data at two test sites, respectively for forest L-band scattering mechanisms analysis and AGB estimation. A multiple linear stepwise regression ( MSLR) model and a fast iterative feature selection for K-nearest neighbor (KNN-FIFS) method are used to estimate the forest AGB at the two test sites. In the present study, there was evident site dependence of the Lband forest scattering mechanisms, while KNN-FIFS performed better in the estimation of forest AGB. The best AGB estimation was acquired at the Hainan test site with RMSE = 28.88 t/ha and rRMSE = 18.46%.
引用
收藏
页码:8074 / 8077
页数:4
相关论文
共 12 条
  • [1] Improved estimates of net carbon emissions from land cover change in the tropics for the 1990s
    Achard, F
    Eva, HD
    Mayaux, P
    Stibig, HJ
    Belward, A
    [J]. GLOBAL BIOGEOCHEMICAL CYCLES, 2004, 18 (02) : GB20081 - 11
  • [2] Aghababaee H, 2016, IEEE T GEOSCI REMOTE, P1
  • [3] Integration of Polarimetric PALSAR Attributes and Local Geomorphometric Variables Derived from SRTM for Forest Biomass Modeling in Central Amazonia
    Bispo, P. C.
    Santos, J. R.
    Valeriano, M. M.
    Touzi, R.
    Seifert, F. M.
    [J]. CANADIAN JOURNAL OF REMOTE SENSING, 2014, 40 (01) : 26 - 42
  • [4] Cartus O., 2019, REMOTE SENS
  • [5] Tree allometry and improved estimation of carbon stocks and balance in tropical forests
    Chave, J
    Andalo, C
    Brown, S
    Cairns, MA
    Chambers, JQ
    Eamus, D
    Fölster, H
    Fromard, F
    Higuchi, N
    Kira, T
    Lescure, JP
    Nelson, BW
    Ogawa, H
    Puig, H
    Riéra, B
    Yamakura, T
    [J]. OECOLOGIA, 2005, 145 (01) : 87 - 99
  • [6] Chowdhury T, 2019, REMOTE SENS, P5725
  • [7] Quad-pol Advanced Land Observing Satellite / Phased Array L-band Synthetic Aperture Radar-2 (ALOS/PALSAR-2) data for modelling secondary forest above-ground biomass in the central Brazilian Amazon
    Godinho Cassol, Henrique Luis
    Cruz De Aragao, Luiz Eduardo
    Moraes, Elisabete Caria
    De Brito Carreiras, Joao Manuel
    Shimabukuro, Yosio Edemir
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2021, 42 (13) : 4989 - 5013
  • [8] Retrieving Secondary Forest Aboveground Biomass from Polarimetric ALOS-2 PALSAR-2 Data in the Brazilian Amazon
    Godinho Cassol, Henrique Luis
    de Brito Carreiras, Joao Manuel
    Moraes, Elisabete Caria
    Oliveira e Cruz de Aragao, Luiz Eduardo
    de Jesus Silva, Camila Valeria
    Quegan, Shaun
    Shimabukuro, Yosio Edemir
    [J]. REMOTE SENSING, 2019, 11 (01)
  • [9] Stem volume of tropical forests from polarimetric radar
    Goncalves, F. G.
    Santos, J. R.
    Treuhaft, R. N.
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2011, 32 (02) : 503 - 522
  • [10] Han ZongTao Han ZongTao, 2018, Scientia Silvae Sinicae, V54, P70