Artificial Intelligence-Driven Eye Disease Classification Model

被引:4
作者
Sait, Abdul Rahaman Wahab [1 ]
机构
[1] King Faisal Univ, Ctr Documents & Adm Commun, Dept Documents & Arch, POB 400, Al Hufuf 31982, Al Hasa, Saudi Arabia
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 20期
关键词
artificial intelligence; ShuffleNet V2; single shot detection; ocular diseases; machine learning; DEEP; PREDICTION;
D O I
10.3390/app132011437
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Eye diseases can result in various challenges and visual impairments. These diseases can affect an individual's quality of life and general health and well-being. The symptoms of eye diseases vary widely depending on the nature and severity of the disease. Early diagnosis can protect individuals from visual impairment. Artificial intelligence (AI)-based eye disease classification (EDC) assists physicians in providing effective patient services. However, the complexities of the fundus image affect the classifier's performance. There is a demand for a practical EDC for identifying eye diseases in the earlier stages. Thus, the author intends to build an EDC model using the deep learning (DL) technique. Denoising autoencoders are used to remove the noises and artifacts from the fundus images. The single-shot detection (SSD) approach generates the key features. The whale optimization algorithm (WOA) with Levy Flight and Wavelet search strategy is followed for selecting the features. In addition, the Adam optimizer (AO) is applied to fine-tune the ShuffleNet V2 model to classify the fundus images. Two benchmark datasets, ocular disease intelligent recognition (ODIR) and EDC datasets, are utilized for performance evaluation. The proposed EDC model achieved accuracy and Kappa values of 99.1 and 96.4, and 99.4 and 96.5, in the ODIR and EDC datasets, respectively. It outperformed the recent EDC models. The findings highlight the significance of the proposed EDC model in classifying eye diseases using complex fundus images. Healthcare centers can implement the proposed model to improve their standards and serve a more significant number of patients. In the future, the proposed model can be extended to identify a comprehensive range of eye diseases.
引用
收藏
页数:18
相关论文
共 50 条
[31]   Artificial intelligence-driven drug development against autoimmune diseases [J].
Moingeon, Philippe .
TRENDS IN PHARMACOLOGICAL SCIENCES, 2023, 44 (07) :411-424
[32]   Artificial intelligence-driven phenotyping of zebrafish psychoactive drug responses [J].
Bozhko, Dmitrii, V ;
Myrov, Vladislav O. ;
Kolchanova, Sofia M. ;
Polovian, Aleksandr, I ;
Galumov, Georgii K. ;
Demin, Konstantin A. ;
Zabegalov, Konstantin N. ;
Strekalova, Tatiana ;
de Abreu, Murilo S. ;
Petersen, Elena, V ;
Kalueff, Allan, V .
PROGRESS IN NEURO-PSYCHOPHARMACOLOGY & BIOLOGICAL PSYCHIATRY, 2022, 112
[33]   Artificial Intelligence-Driven Image Analysis of Bacterial Cells and Biofilms [J].
Ragi, Shankarachary ;
Rahman, Md Hafizur ;
Duckworth, Jamison ;
Jawaharraj, Kalimuthu ;
Chundi, Parvathi ;
Gadhamshetty, Venkataramana .
IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2023, 20 (01) :174-184
[34]   New Generation Artificial Intelligence-driven Intelligent Manufacturing (NGAIIM) [J].
Li, Bohu ;
Chai, Xudong ;
Hou, Baocun ;
Zhang, Lin ;
Zhou, Jiehan ;
Liu, Yang .
2018 IEEE SMARTWORLD, UBIQUITOUS INTELLIGENCE & COMPUTING, ADVANCED & TRUSTED COMPUTING, SCALABLE COMPUTING & COMMUNICATIONS, CLOUD & BIG DATA COMPUTING, INTERNET OF PEOPLE AND SMART CITY INNOVATION (SMARTWORLD/SCALCOM/UIC/ATC/CBDCOM/IOP/SCI), 2018, :1864-1869
[35]   Artificial intelligence-driven sentiment analysis and optimization of movie scripts [J].
Hong Zheng .
Discover Artificial Intelligence, 5 (1)
[36]   An artificial intelligence-driven revolution in orthopedic surgery and sports medicine [J].
Guan, Jiekai ;
Li, Zuhao ;
Sheng, Shihao ;
Lin, Qiushui ;
Wang, Sicheng ;
Wang, Dongliang ;
Chen, Xiao ;
Su, Jiacan .
INTERNATIONAL JOURNAL OF SURGERY, 2025, 111 (02) :2162-2181
[37]   Artificial intelligence-driven prescriptive model to optimize team efficiency in a high-volume primary arthroplasty practice [J].
Al Zoubi, Farid ;
Gold, Richard ;
Poitras, Stephane ;
Kreviazuk, Cheryl ;
Brillinger, Julia ;
Fallavollita, Pascal ;
Beaule, Paul E. .
INTERNATIONAL ORTHOPAEDICS, 2023, 47 (02) :343-350
[38]   Artificial intelligence-driven prescriptive model to optimize team efficiency in a high-volume primary arthroplasty practice [J].
Farid Al Zoubi ;
Richard Gold ;
Stéphane Poitras ;
Cheryl Kreviazuk ;
Julia Brillinger ;
Pascal Fallavollita ;
Paul E. Beaulé .
International Orthopaedics, 2023, 47 :343-350
[39]   A fully automated artificial intelligence-driven software for planning of transcatheter aortic valve replacement [J].
Toggweiler, Stefan ;
von Ballmoos, Moritz C. Wyler ;
Moccetti, Federico ;
Douverny, Andre ;
Wolfrum, Mathias ;
Imamoglu, Ziya ;
Mohler, Anton ;
Gulan, Utku ;
Kim, Won-Keun .
CARDIOVASCULAR REVASCULARIZATION MEDICINE, 2024, 65 :25-31
[40]   Artificial Intelligence-Driven Radiomics in Head and Neck Cancer: Current Status and Future Prospects [J].
Alabi, Rasheed Omobolaji ;
Elmusrati, Mohammed ;
Leivo, Ilmo ;
Almangush, Alhadi ;
Makitie, Antti A. .
INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2024, 188