Identifying Effective Biomarkers for Accurate Pancreatic Cancer Prognosis Using Statistical Machine Learning

被引:3
作者
Abu-Khudir, Rasha [1 ,2 ]
Hafsa, Noor [3 ]
Badr, Badr E. [4 ,5 ]
机构
[1] King Faisal Univ, Coll Sci, Chem Dept, POB 380, Al Hasa 31982, Saudi Arabia
[2] Tanta Univ, Fac Sci, Chem Dept, Biochem Branch, Tanta 31527, Egypt
[3] King Faisal Univ, Coll Comp Sci & Informat Technol, Comp Sci Dept, POB 400, Al Hasa 31982, Saudi Arabia
[4] Egyptian Minist Lab, Training & Res Dept, Tanta 31512, Egypt
[5] Tanta Univ, Fac Sci, Bot Dept, Microbiol Unit, Tanta 31527, Egypt
关键词
pancreatic cancer; CA19-9; CXCL-8; PCT; biomarkers; prognosis; statistical analysis; machine learning; ARTIFICIAL-INTELLIGENCE; DUCTAL ADENOCARCINOMA; SURVIVAL PREDICTION; SEPSIS PREDICTION; BLOOD CULTURES; SEPTIC SHOCK; MANAGEMENT; DIAGNOSIS; MORTALITY; RISK;
D O I
10.3390/diagnostics13193091
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Pancreatic cancer (PC) has one of the lowest survival rates among all major types of cancer. Consequently, it is one of the leading causes of mortality worldwide. Serum biomarkers historically correlate well with the early prognosis of post-surgical complications of PC. However, attempts to identify an effective biomarker panel for the successful prognosis of PC were almost non-existent in the current literature. The current study investigated the roles of various serum biomarkers including carbohydrate antigen 19-9 (CA19-9), chemokine (C-X-C motif) ligand 8 (CXCL-8), procalcitonin (PCT), and other relevant clinical data for identifying PC progression, classified into sepsis, recurrence, and other post-surgical complications, among PC patients. The most relevant biochemical and clinical markers for PC prognosis were identified using a random-forest-powered feature elimination method. Using this informative biomarker panel, the selected machine-learning (ML) classification models demonstrated highly accurate results for classifying PC patients into three complication groups on independent test data. The superiority of the combined biomarker panel (Max AUC-ROC = 100%) was further established over using CA19-9 features exclusively (Max AUC-ROC = 75%) for the task of classifying PC progression. This novel study demonstrates the effectiveness of the combined biomarker panel in successfully diagnosing PC progression and other relevant complications among Egyptian PC survivors.
引用
收藏
页数:28
相关论文
共 180 条
[31]   An Exploratory Study of Inflammatory Cytokines as Prognostic Biomarkers in Patients With Ductal Pancreatic Adenocarcinoma [J].
Dima, Simona O. ;
Tanase, Cristiana ;
Albulescu, Radu ;
Herlea, Vlad ;
Chivu-Economescu, Mihaela ;
Purnichescu-Purtan, Raluca ;
Dumitrascu, Traian ;
Duda, Dan G. ;
Popescu, Irinel .
PANCREAS, 2012, 41 (07) :1001-1007
[32]   Artificial intelligence (AI) and big data in cancer and precision oncology [J].
Dlamini, Zodwa ;
Francies, Flavia Zita ;
Hull, Rodney ;
Marima, Rahaba .
COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2020, 18 :2300-2311
[33]  
Doan Le Minh Thao, 2023, Methods Mol Biol, V2553, P325, DOI 10.1007/978-1-0716-2617-7_16
[34]  
Dolin Hallie H, 2019, Microbiol Insights, V12, p1178636118825081, DOI 10.1177/1178636118825081
[35]   Dermatologist-level classification of skin cancer with deep neural networks [J].
Esteva, Andre ;
Kuprel, Brett ;
Novoa, Roberto A. ;
Ko, Justin ;
Swetter, Susan M. ;
Blau, Helen M. ;
Thrun, Sebastian .
NATURE, 2017, 542 (7639) :115-+
[36]   Role of Rapid Diagnostics in Diagnosis and Management of Patients With Sepsis [J].
Eubank, Taryn A. ;
Long, S. W. ;
Perez, Katherine K. .
JOURNAL OF INFECTIOUS DISEASES, 2020, 222 :S103-S109
[37]   Serum levels of IL-6, IL-8, and IL-10 are indicators of prognosis in pancreatic cancer [J].
Feng, Lanyun ;
Qi, Qi ;
Wang, Peng ;
Chen, Hao ;
Chen, Zhen ;
Meng, Zhiqiang ;
Liu, Luming .
JOURNAL OF INTERNATIONAL MEDICAL RESEARCH, 2018, 46 (12) :5228-5236
[38]   Trends in Hospital Volume and Operative Mortality for High-Risk Surgery [J].
Finks, Jonathan F. ;
Osborne, Nicholas H. ;
Birkmeyer, John D. .
NEW ENGLAND JOURNAL OF MEDICINE, 2011, 364 (22) :2128-2137
[39]   Comparison between procalcitonin and C-reactive protein for early diagnosis of children with sepsis or septic shock [J].
Fioretto, Jose R. ;
Martin, Joelma G. ;
Kurokawa, Cilmery S. ;
Carpi, Mario F. ;
Bonatto, Rossano C. ;
de Moraes, Marcos A. ;
Ricchetti, Sandra M. Q. .
INFLAMMATION RESEARCH, 2010, 59 (08) :581-586
[40]   Machine learning for the prediction of sepsis: a systematic review and meta-analysis of diagnostic test accuracy [J].
Fleuren, Lucas M. ;
Klausch, Thomas L. T. ;
Zwager, Charlotte L. ;
Schoonmade, Linda J. ;
Guo, Tingjie ;
Roggeveen, Luca F. ;
Swart, Eleonora L. ;
Girbes, Armand R. J. ;
Thoral, Patrick ;
Ercole, Ari ;
Hoogendoorn, Mark ;
Elbers, Paul W. G. .
INTENSIVE CARE MEDICINE, 2020, 46 (03) :383-400