DNN-Based Map Deviation Detection in LiDAR Point Clouds

被引:9
|
作者
Plachetka, Christopher [1 ]
Sertolli, Benjamin [1 ]
Fricke, Jenny [1 ]
Klingner, Marvin [2 ]
Fingscheidt, Tim [2 ]
机构
[1] Volkswagen Grp, Selfdriving Syst Dev, D-38440 Wolfsburg, Germany
[2] Tech Univ Carolo Wilhelmina Braunschweig, Inst Commun Technol, D-38106 Braunschweig, Germany
来源
IEEE OPEN JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS | 2023年 / 4卷
关键词
3D object detection; automated driving; convolutional neural network (CNN); deep neural network (DNN); deviation detection; high-definition (HD) map; LiDAR; map verification; map validation; TRAFFIC-SIGN DETECTION; POLE-LIKE OBJECTS; MOBILE; CLASSIFICATION; RECOGNITION; SEGMENTATION; EXTRACTION;
D O I
10.1109/OJITS.2023.3293911
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this work we present a novel deep learning-based approach to detect and specify map deviations in erroneous or outdated high-definition (HD) maps using both sensor and map data as input to a deep neural network (DNN). We first present our proposed reference method for map deviation detection (MDD) utilizing a sensor-only DNN detecting traffic signs, traffic lights, and pole-like objects in LiDAR data, with deviations obtained by subsequently comparing detected objects and examined map. Second, we facilitate the object detection task by using the examined map as additional input to the network. Third, we employ a specialized MDD network to directly infer the correctness of the map input. Finally, we demonstrate the robustness of our approach for challenging scenes featuring occlusions and a reduced point density, e.g., due to heavy rain. Our code is available at https://github.com/Volkswagen/3dhd_devkit.
引用
收藏
页码:580 / 601
页数:22
相关论文
共 50 条
  • [21] OPTIMAL TRANSPORT FOR CHANGE DETECTION ON LIDAR POINT CLOUDS
    Fiorucci, Marco
    Naylor, Peter
    Yamada, Makoto
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 982 - 985
  • [22] CLASSIFICATION OF MULTISPECTRAL LIDAR POINT CLOUDS
    Ekhtari, Nima
    Glennie, Craig
    Fernandez-Diaz, Juan Carlos
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 2756 - 2759
  • [23] Evaluation of Tree Detection and Segmentation Algorithms in Peat Swamp Forest Based on LiDAR Point Clouds Data
    Irlan
    Saleh, Muhammad Buce
    Prasetyo, Lilik Budi
    Setiawan, Yudi
    JURNAL MANAJEMEN HUTAN TROPIKA, 2020, 26 (02): : 123 - 132
  • [24] Modelling of buildings from aerial LiDAR point clouds using TINs and label maps
    Li, Minglei
    Rottensteiner, Franz
    Heipke, Christian
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2019, 154 : 127 - 138
  • [25] A Fast Spatial Clustering Method for Sparse LiDAR Point Clouds Using GPU Programming
    Tian, Yifei
    Song, Wei
    Chen, Long
    Sung, Yunsick
    Kwak, Jeonghoon
    Sun, Su
    SENSORS, 2020, 20 (08)
  • [26] MIN-CUT BASED SEGMENTATION OF AIRBORNE LIDAR POINT CLOUDS
    Ural, Serkan
    Shan, Jie
    XXII ISPRS CONGRESS, TECHNICAL COMMISSION III, 2012, 39-B3 : 167 - 172
  • [27] GCN-Based Pavement Crack Detection Using Mobile LiDAR Point Clouds
    Feng, Huifang
    Li, Wen
    Luo, Zhipeng
    Chen, Yiping
    Fatholahi, Sarah Narges
    Cheng, Ming
    Wang, Cheng
    Marcato Junior, Jose
    Li, Jonathan
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (08) : 11052 - 11061
  • [28] A joint deep learning network of point clouds and multiple views for roadside object classification from lidar point clouds
    Fang, Lina
    You, Zhilong
    Shen, Guixi
    Chen, Yiping
    Li, Jianrong
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2022, 193 : 115 - 136
  • [29] Comparison of LiDAR and Stereo Photogrammetric Point Clouds for Change Detection
    Basgall, Paul L.
    Kruse, Fred A.
    Olsen, Richard C.
    LASER RADAR TECHNOLOGY AND APPLICATIONS XIX; AND ATMOSPHERIC PROPAGATION XI, 2014, 9080
  • [30] An efficient XGBoost–DNN-based classification model for network intrusion detection system
    Preethi Devan
    Neelu Khare
    Neural Computing and Applications, 2020, 32 : 12499 - 12514