Homoclinic Bifurcations in a Class of Three-Dimensional Symmetric Piecewise Affine Systems

被引:1
作者
Liu, Ruimin [1 ]
Liu, Minghao [1 ]
Wu, Tiantian [1 ]
机构
[1] Shandong Normal Univ, Sch Math Sci, Jinan 250014, Peoples R China
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2023年 / 33卷 / 09期
基金
中国国家自然科学基金;
关键词
Homoclinic orbit; limit cycle; homoclinic bifurcation; piecewise affine system; FLIP BIFURCATION; LIMIT-CYCLES; EXISTENCE; ORBITS; CHAOS;
D O I
10.1142/S0218127423501110
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Many physical and engineering systems have certain symmetric properties. Homoclinic orbits play an important role in studying the global dynamics of dynamical systems. This paper focuses on the existence and bifurcations of homoclinic orbits to a saddle in a class of three-dimensional one-parameter three-zone symmetric piecewise affine systems. Based on the analysis of the Poincare maps, the systems have two types of limit cycles and do not have chaotic invariant sets near the homoclinic orbits. In addition, the paper provides a constant D to study the homoclinic bifurcations to limit cycles for the case |?(1)| = ?(3). Two examples with simulations of the homoclinic orbits and the limit cycles are given to illustrate the effectiveness of the results.
引用
收藏
页数:15
相关论文
共 32 条
  • [1] On the Limit Cycles of a Class of Discontinuous Piecewise Differential Systems Formed by Two Rigid Centers Governed by Odd Degree Polynomials
    Carvalho, Tiago
    Goncalves, Luiz Fernando
    Llibre, Jaume
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2022, 32 (16):
  • [2] Stability and Perturbations of Homoclinic Loops in a Class of Piecewise Smooth Systems
    Chen, Shuang
    Du, Zhengdong
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2015, 25 (09):
  • [3] Chicone C., 2006, ORDINARY DIFFERENTIA, V34
  • [4] Discontinuity-induced bifurcations of equilibria in piecewise-smooth and impacting dynamical systems
    di Bernardo, M.
    Nordmark, A.
    Olivar, G.
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2008, 237 (01) : 119 - 136
  • [5] On the critical crossing cycle bifurcation in planar Filippov systems
    Freire, Emilio
    Ponce, Enrique
    Torres, Francisco
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (12) : 7086 - 7107
  • [6] A general mechanism to generate three limit cycles in planar Filippov systems with two zones
    Freire, Emilio
    Ponce, Enrique
    Torres, Francisco
    [J]. NONLINEAR DYNAMICS, 2014, 78 (01) : 251 - 263
  • [7] Energy pumping in nonlinear mechanical oscillators: Part I - Dynamics of the underlying Hamiltonian systems
    Gendelman, O
    Manevitch, LI
    Vakakis, AF
    M'Closkey, R
    [J]. JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2001, 68 (01): : 34 - 41
  • [8] Cascades of Global Bifurcations and Chaos near a Homoclinic Flip Bifurcation: A Case Study
    Giraldo, Andrus
    Krauskopf, Bernd
    Osinga, Hinke M.
    [J]. SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2018, 17 (04): : 2784 - 2829
  • [9] Saddle Invariant Objects and Their Global Manifolds in a Neighborhood of a Homoclinic Flip Bifurcation of Case B
    Giraldo, Andrus
    Krauskopf, Bernd
    Osinga, Hinke M.
    [J]. SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2017, 16 (01): : 640 - 686
  • [10] Lorenz attractors in unfoldings of homoclinic-flip bifurcations
    Golmakani, A.
    Homburg, A. J.
    [J]. DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2011, 26 (01): : 61 - 76