Interpolating Nonadiabatic Molecular Dynamics Hamiltonian with Bidirectional Long Short-Term Memory Networks

被引:7
作者
Wang, Bipeng [1 ]
Winkler, Ludwig [2 ]
Wu, Yifan [3 ]
Muller, Klaus-Robert [2 ,4 ,5 ,6 ,7 ]
Sauceda, Huziel E. [8 ,9 ]
Prezhdo, Oleg V. [1 ,3 ]
机构
[1] Univ Southern Calif, Dept Chem Engn, Los Angeles, CA 90089 USA
[2] Tech Univ Berlin, Machine Learning Grp, D-10587 Berlin, Germany
[3] Univ Southern Calif, Dept Chem, Los Angeles, CA 90089 USA
[4] Berlin Inst Fdn Learning & Data, BIFOLD, D-10587 Berlin, Germany
[5] Korea Univ, Dept Artificial Intelligence, Seoul 136713, South Korea
[6] Max Planck Inst Informat, D-66123 Saarbrucken, Germany
[7] Google Deepmind, D-10587 Berlin, Germany
[8] Tech Univ Berlin, BASF TU joint Lab, BASLEARN, D-10587 Berlin, Germany
[9] Univ Nacl Autonoma Mexico, Mexico City 01000, DF, Mexico
基金
美国国家科学基金会;
关键词
TOTAL-ENERGY CALCULATIONS; PYXAID PROGRAM; LOCALIZATION; SCHEMES;
D O I
10.1021/acs.jpclett.3c01723
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Essential for understandingfar-from-equilibrium processes,nonadiabatic(NA) molecular dynamics (MD) requires expensive calculations of theexcitation energies and NA couplings. Machine learning (ML) can simplify computation; however, the NA Hamiltonian requires complex ML modelsdue to its intricate relationship to atomic geometry. Working directlyin the time domain, we employ bidirectional long short-term memorynetworks (Bi-LSTM) to interpolate the Hamiltonian. Applying this multiscaleapproach to three metal-halide perovskite systems, we achieve twoorders of magnitude computational savings compared to direct ab initiocalculation. Reasonable charge trapping and recombination times areobtained with NA Hamiltonian sampling every half a picosecond. TheBi-LSTM-NAMD method outperforms earlier models and captures both slowand fast time scales. In combination with ML force fields, the methodologyextends NAMD simulation times from picoseconds to nanoseconds, comparableto charge carrier lifetimes in many materials. Nanosecond samplingis particularly important in systems containing defects, boundaries,interfaces, etc. that can undergo slow rearrangements.
引用
收藏
页码:7092 / 7099
页数:8
相关论文
共 34 条
  • [31] Spatio-Temporal Feature Extraction for Pipeline Leak Detection in Smart Cities Using Acoustic Emission Signals: A One-Dimensional Hybrid Convolutional Neural Network-Long Short-Term Memory Approach
    Ullah, Saif
    Ullah, Niamat
    Siddique, Muhammad Farooq
    Ahmad, Zahoor
    Kim, Jong-Myon
    APPLIED SCIENCES-BASEL, 2024, 14 (22):
  • [32] Haploinsufficiency of the 22q11.2 microdeletion gene Mrpl40 disrupts short-term synaptic plasticity and working memory through dysregulation of mitochondrial calcium
    Devaraju, P.
    Yu, J.
    Eddins, D.
    Mellado-Lagarde, M. M.
    Earls, L. R.
    Westmoreland, J. J.
    Quarato, G.
    Green, D. R.
    Zakharenko, S. S.
    MOLECULAR PSYCHIATRY, 2017, 22 (09) : 1313 - 1326
  • [33] The neural correlates of auditory-verbal short-term memory: a voxel-based lesion-symptom mapping study on 103 patients after glioma removal
    Pisoni, Alberto
    Mattavelli, Giulia
    Casarotti, Alessandra
    Comi, Alessandro
    Riva, Marco
    Bello, Lorenzo
    Papagno, Costanza
    BRAIN STRUCTURE & FUNCTION, 2019, 224 (06) : 2199 - 2211
  • [34] A Gaussian Process-Enhanced Non-Linear Function and Bayesian Convolution-Bayesian Long Term Short Memory Based Ultra-Wideband Range Error Mitigation Method for Line of Sight and Non-Line of Sight Scenarios
    Sagar, A. S. M. Sharifuzzaman
    Arefin, Samsil
    Moon, Eesun
    Prince, Md Masud Pervez
    Dang, L. Minh
    Haider, Amir
    Kim, Hyung Seok
    MATHEMATICS, 2024, 12 (23)