共 34 条
Interpolating Nonadiabatic Molecular Dynamics Hamiltonian with Bidirectional Long Short-Term Memory Networks
被引:7
作者:
Wang, Bipeng
[1
]
Winkler, Ludwig
[2
]
Wu, Yifan
[3
]
Muller, Klaus-Robert
[2
,4
,5
,6
,7
]
Sauceda, Huziel E.
[8
,9
]
Prezhdo, Oleg V.
[1
,3
]
机构:
[1] Univ Southern Calif, Dept Chem Engn, Los Angeles, CA 90089 USA
[2] Tech Univ Berlin, Machine Learning Grp, D-10587 Berlin, Germany
[3] Univ Southern Calif, Dept Chem, Los Angeles, CA 90089 USA
[4] Berlin Inst Fdn Learning & Data, BIFOLD, D-10587 Berlin, Germany
[5] Korea Univ, Dept Artificial Intelligence, Seoul 136713, South Korea
[6] Max Planck Inst Informat, D-66123 Saarbrucken, Germany
[7] Google Deepmind, D-10587 Berlin, Germany
[8] Tech Univ Berlin, BASF TU joint Lab, BASLEARN, D-10587 Berlin, Germany
[9] Univ Nacl Autonoma Mexico, Mexico City 01000, DF, Mexico
基金:
美国国家科学基金会;
关键词:
TOTAL-ENERGY CALCULATIONS;
PYXAID PROGRAM;
LOCALIZATION;
SCHEMES;
D O I:
10.1021/acs.jpclett.3c01723
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
Essential for understandingfar-from-equilibrium processes,nonadiabatic(NA) molecular dynamics (MD) requires expensive calculations of theexcitation energies and NA couplings. Machine learning (ML) can simplify computation; however, the NA Hamiltonian requires complex ML modelsdue to its intricate relationship to atomic geometry. Working directlyin the time domain, we employ bidirectional long short-term memorynetworks (Bi-LSTM) to interpolate the Hamiltonian. Applying this multiscaleapproach to three metal-halide perovskite systems, we achieve twoorders of magnitude computational savings compared to direct ab initiocalculation. Reasonable charge trapping and recombination times areobtained with NA Hamiltonian sampling every half a picosecond. TheBi-LSTM-NAMD method outperforms earlier models and captures both slowand fast time scales. In combination with ML force fields, the methodologyextends NAMD simulation times from picoseconds to nanoseconds, comparableto charge carrier lifetimes in many materials. Nanosecond samplingis particularly important in systems containing defects, boundaries,interfaces, etc. that can undergo slow rearrangements.
引用
收藏
页码:7092 / 7099
页数:8
相关论文
共 34 条