Density Functional Theory Study of Bilayer Borophene-Based Anode Material for Rechargeable Lithium Ion Batteries

被引:21
作者
Gao, Nan [1 ]
Ye, Panbin [1 ]
Chen, Jinghuang [1 ]
Xiao, Jingyi [2 ]
Yang, Xiaowei [3 ]
机构
[1] Taizhou Univ, Sch Mat Sci & Engn, Taizhou 318000, Peoples R China
[2] Dalian Univ Technol, Instrumental Anal Ctr, Dalian 116024, Peoples R China
[3] Dalian Univ Technol, Key Lab Mat Modificat Laser Ion & Electron Beams, Minist Educ, Dalian 116024, Peoples R China
基金
中国国家自然科学基金;
关键词
HIGH-RATE CAPABILITY; AB-INITIO PREDICTION; LI-ION; NEGATIVE ELECTRODES; MONOLAYER; CAPACITY; STORAGE; 1ST-PRINCIPLES; DIFFUSION; MXENES;
D O I
10.1021/acs.langmuir.3c01371
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The bilayer borophene has been successfully fabricatedin experimentsrecently and possesses superior antioxidation and robust metallicproperties, which holds great promise for the future anode materialsof Li-ion batteries. Herein, using first-principles calculations,two bilayer borophenes including P6/mmm or P6 m2 symmetry groupswith or without vacancy defects are comprehensively explored and actedas electrode materials with high performance in Li-ion batteries.The charge density difference, adsorption energies, and Bader chargeanalysis are calculated and discussed for single lithium adsorbedon bilayer borophene. The results shown that with the increase oflithium concentration, the adsorption energies are rapidly decreaseddue to the repulsion of boron atoms except for the P6 m2 systems with double side adsorption andcorresponding energies remain the narrow range. Meanwhile, the partialdensity of states shows metallic character after lithium adsorptionand indicates good conductivity for the charge-discharge process.Furthermore, small diffusion barriers, low average open-circuit voltage,can be achieved, and large storage capacity is up to 930.2 mA h/gat the lower lithium content of 0.375. These results propose thatbilayer borophene might be a good choice for anode material applicationsin future Li-ion batteries with fast ion diffusion and high powerdensity.
引用
收藏
页码:10270 / 10279
页数:10
相关论文
共 73 条
[1]   Transport and confinement in bilayer chiral borophene [J].
Albuhairan, Hassan Y. ;
Abdullah, H. M. ;
Schwingenschlogl, U. .
2D MATERIALS, 2022, 9 (02)
[2]   The success story of graphite as a lithium-ion anode material - fundamentals, remaining challenges, and recent developments including silicon (oxide) composites [J].
Asenbauer, Jakob ;
Eisenmann, Tobias ;
Kuenzel, Matthias ;
Kazzazi, Arefeh ;
Chen, Zhen ;
Bresser, Dominic .
SUSTAINABLE ENERGY & FUELS, 2020, 4 (11) :5387-5416
[3]   A SIMPLE MEASURE OF ELECTRON LOCALIZATION IN ATOMIC AND MOLECULAR-SYSTEMS [J].
BECKE, AD ;
EDGECOMBE, KE .
JOURNAL OF CHEMICAL PHYSICS, 1990, 92 (09) :5397-5403
[4]   High rate capability of graphite negative electrodes for lithium-ion batteries [J].
Buqa, H ;
Goers, D ;
Holzapfel, M ;
Spahr, ME ;
Novák, P .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (02) :A474-A481
[5]   Mo2C as a high capacity anode material: a first-principles study [J].
Cakir, Deniz ;
Sevik, Cem ;
Gulseren, Oguz ;
Peeters, Francois M. .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (16) :6029-6035
[6]   Synthesis of bilayer borophene [J].
Chen, Caiyun ;
Lv, Haifeng ;
Zhang, Ping ;
Zhuo, Zhiwen ;
Wang, Yu ;
Ma, Chen ;
Li, Wenbin ;
Wang, Xuguang ;
Feng, Baojie ;
Cheng, Peng ;
Wu, Xiaojun ;
Wu, Kehui ;
Chen, Lan .
NATURE CHEMISTRY, 2022, 14 (01) :25-+
[7]   Semi-metallic bilayer borophene for lithium-ion batteries anode material: A first-principles study [J].
Chen, Miaogen ;
Dai, Yilian ;
Li, Taotao ;
Zhang, Xiaofei ;
Li, Can ;
Zhang, Jing .
CHEMICAL PHYSICS, 2023, 571
[8]   MoS2/Graphene Composite Paper for Sodium-Ion Battery Electrodes [J].
David, Lamuel ;
Bhandavat, Romil ;
Singh, Gurpreet .
ACS NANO, 2014, 8 (02) :1759-1770
[9]   Recent Advances and Promise of MXene-Based Nanostructures for High-Performance Metal Ion Batteries [J].
Dong, Yanfeng ;
Shi, Haodong ;
Wu, Zhong-Shuai .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (47)
[10]   The birth of bilayer borophene [J].
Ebrahimi, Maryam .
NATURE CHEMISTRY, 2022, 14 (01) :3-4