Inverse optimal extremum seeking under delays

被引:0
作者
Ferreira, Denis Cesar [1 ]
Oliveira, Tiago Roux [1 ]
Krstic, Miroslav [2 ]
机构
[1] State Univ Rio De Janeiro UERJ, Dept Elect & Telecommun Engn, BR-20550900 Rio De Janeiro, RJ, Brazil
[2] Univ Calif San Diego UCSD, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA
关键词
Extremum seeking; Time delays; Inverse optimality; Predictors; Backstepping transformation; LIE BRACKET APPROXIMATION; OPTIMAL-DESIGN; STABILIZATION; STABILITY; ROBUSTNESS; FEEDBACKS;
D O I
10.1016/j.sysconle.2023.105534
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We establish the inverse optimality in the average sense of our earlier Gradient-and Newton-based extremum seeking algorithms for maximizing unknown locally quadratic maps in the presence of constant delays. To compensate the delay, these algorithms employ a predictor feedback with a perturbation-based estimate for the unknown Hessian (or its inverse). The algorithm's inverse optimality is the result of running the predictor through a simple first-order filter with a fast enough pole. (c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:12
相关论文
共 33 条
[1]   Parameter convergence in adaptive extremum-seeking control [J].
Adetola, V. ;
Guay, M. .
AUTOMATICA, 2007, 43 (01) :105-110
[2]   Input-to-state stability and inverse optimality of predictor feedback for multi-input linear systems [J].
Cai, Xiushan ;
Bekiaris-Liberis, Nikolaos ;
Krstic, Miroslav .
AUTOMATICA, 2019, 103 :549-557
[3]   Input-to-State Stability and Inverse Optimality of Linear Time-Varying-Delay Predictor Feedbacks [J].
Cai, Xiushan ;
Bekiaris-Liberis, Nikolaos ;
Krstic, Miroslav .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2018, 63 (01) :233-240
[4]   Stochastic nonlinear stabilization .2. Inverse optimality [J].
Deng, H ;
Krstic, M .
SYSTEMS & CONTROL LETTERS, 1997, 32 (03) :151-159
[5]   Stabilization of stochastic nonlinear systems driven by noise of unknown covariance [J].
Deng, H. ;
Krstić, M. ;
Williams, R.J. .
1600, Institute of Electrical and Electronics Engineers Inc. (46)
[6]   Lie bracket approximation of extremum seeking systems [J].
Duerr, Hans-Bernd ;
Stankovic, Milos S. ;
Ebenbauer, Christian ;
Johansson, Karl Henrik .
AUTOMATICA, 2013, 49 (06) :1538-1552
[7]   Multivariable Newton-based extremum seeking [J].
Ghaffari, Azad ;
Krstic, Miroslav ;
Nesic, Dragan .
AUTOMATICA, 2012, 48 (08) :1759-1767
[8]   On a class of generating vector fields for the extremum seeking problem: Lie bracket approximation and stability properties [J].
Grushkovskaya, Victoria ;
Zuyev, Alexander ;
Ebenbauer, Christian .
AUTOMATICA, 2018, 94 :151-160
[9]  
Hale J.K., 1990, J. Integral Equations Appl., V2, P463, DOI [DOI 10.1216/JIEA/1181075583), 10.1216/jiea/1181075583, DOI 10.1216/JIEA/1181075583]
[10]   Control Lyapunov-Razumikhin functions and robust stabilization of time delay systems [J].
Jankovic, M .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2001, 46 (07) :1048-1060