Boundedness of Iwasawa Invariants of Fine Selmer Groups and Selmer Groups

被引:2
作者
Kleine, Soeren [1 ]
Matar, Ahmed [2 ]
机构
[1] Univ Bundeswehr Munchen, Inst Theoret Informat Math & Operat Res, Werner Heisenberg Weg 39, D-85577 Neubiberg, Germany
[2] Univ Bahrain, Dept Math, POB 32038, Sukhair, Bahrain
关键词
Boundedness of Iwasawa invariants; generalised Iwasawa invariants; abelian varieties; Selmer groups; fine Selmer groups; weak Leopoldt conjecture; ABELIAN-VARIETIES; ELLIPTIC-CURVES; EXTENSIONS; VALUES;
D O I
10.1007/s00025-023-01920-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we consider Selmer groups and fine Selmer groups of abelian varieties over a number field K. Following a classical approach of Monsky for Iwasawa modules from ideal class groups, we give sufficient conditions for the Iwasawa mu-invariants of the fine Selmer groups and the mu-invariants of the Selmer groups to be bounded as one runs over the Z(p)-extensions of K. Moreover, we describe a criterion for the boundedness of Iwasawa lambda-invariants of Selmer groups and fine Selmer groups over multiple Z(p)-extensions which generalises a criterion of Monsky from dimension 2 to arbitrary dimension.
引用
收藏
页数:42
相关论文
共 32 条
[1]  
[Anonymous], 2015, ijppaw, DOI DOI 10.1016/j.tpb.2015.06.003
[2]  
Babaicev VA., 1980, IZV AKAD NAUK SSSR M, V44, P3
[3]  
Bosch Siegfried., 2006, ALGEBRA SPRINGER LEH, V6
[4]   Prime decomposition in the anti-cyclotomic extension [J].
Brink, David .
MATHEMATICS OF COMPUTATION, 2007, 76 (260) :2127-2138
[5]   Fine Selmer groups of elliptic curves over p-adic Lie extensions [J].
Coates, J ;
Sujatha, R .
MATHEMATISCHE ANNALEN, 2005, 331 (04) :809-839
[6]   Kummer theory for abelian varieties over local fields [J].
Coates, J ;
Greenberg, R .
INVENTIONES MATHEMATICAE, 1996, 124 (1-3) :129-174
[7]   CLASS-NUMBERS IN ZPD-EXTENSIONS [J].
CUOCO, AA ;
MONSKY, P .
MATHEMATISCHE ANNALEN, 1981, 255 (02) :235-258
[8]  
Eisenbud D., 1995, Graduate Texts in Mathematics, V150
[9]   IWASAWA INVARIANTS OF T-EXTENSIONS OF A FIXED NUMBER FIELD [J].
GREENBERG, R .
AMERICAN JOURNAL OF MATHEMATICS, 1973, 95 (01) :204-214
[10]   Galois theory for the Selmer group of an Abelian variety [J].
Greenberg, R .
COMPOSITIO MATHEMATICA, 2003, 136 (03) :255-297