Long-time behavior for a non-autonomous Klein-Gordon-Schrodinger system with Yukawa coupling

被引:0
作者
Bonotto, E. M. [1 ]
Nascimento, M. J. D. [2 ]
Webler, C. M. [3 ]
机构
[1] Univ Sao Paulo, Inst Ciencias Matemat & Comp, Campus Sao Carlos Caixa Postal 668, BR-13560970 Sao Carlos, SP, Brazil
[2] Univ Fed Sao Carlos, Dept Matemat, BR-13565905 Sao Carlos, SP, Brazil
[3] Univ Estadual Maringa, Dept Matemat, BR-87020900 Maringa, PR, Brazil
来源
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2023年 / 30卷 / 04期
基金
巴西圣保罗研究基金会;
关键词
Klein-Gordon-Schrodinger system; Global well-posedness; Pullback attractor; Weak pullback attractor; Yukawa coupling; ATTRACTORS; EQUATIONS;
D O I
10.1007/s00030-023-00859-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the global well-posedness of a non-autonomous Klein-Gordon-Schrodinger type system that models a scalar nucleons interacting with neutral mesons in tree spatial dimension. Moreover, we establish the existence of the weak pullback attractor as well the existence of the strong pullback attractor is obtained in a more regular space.
引用
收藏
页数:29
相关论文
共 16 条
  • [1] Amann H., 1995, VOL ABSTRACT LINEAR, V89
  • [2] [Anonymous], 2012, Attractors for Infinite-dimensional Non-autonomous Dynamical Systems, Applied Mathematical Sciences 182
  • [4] Asymptotic behavior of the coupled Klein-Gordon-Schrodinger systems on compact manifolds
    Bortot, Cesar A.
    Souza, Thales M.
    Zanchetta, Janaina P.
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (04) : 2254 - 2275
  • [5] Brezis H, 2011, UNIVERSITEXT, P1
  • [6] EXPONENTIAL STABILITY FOR THE COUPLED KLEIN-GORDON-SCHRODINGER EQUATIONS WITH LOCALLY DISTRIBUTED DAMPING
    De Almeida, Adriana Flores
    Cavalcanti, Marcelo Moreira
    Zanchetta, Janaina Pedroso
    [J]. EVOLUTION EQUATIONS AND CONTROL THEORY, 2019, 8 (04): : 847 - 865
  • [7] COUPLED KLEIN-GORDON-SCHRODINGER EQUATIONS .2.
    FUKUDA, I
    TSUTSUMI, M
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1978, 66 (02) : 358 - 378
  • [8] GHIDAGLIA JM, 1988, ANN I H POINCARE-AN, V5, P365
  • [9] GHIDAGLIA JM, 1987, J MATH PURE APPL, V66, P273
  • [10] Guo BL, 1997, J DIFFER EQUATIONS, V136, P356, DOI 10.1006/jdeq.1996.3242