Application of Deep Learning in Software Defect Prediction: Systematic Literature Review and Meta-analysis

被引:20
|
作者
Zain, Zuhaira Muhammad [1 ]
Sakri, Sapiah [1 ]
Ismail, Nurul Halimatul Asmak [2 ]
机构
[1] Princess Nourah Bint Abdulrahman Univ, Coll Comp & Informat Sci, Informat Syst Dept, Riyadh, Saudi Arabia
[2] Princess Nourah Bint Abdulrahman Univ, Appl Coll, Dept Comp Sci & Informat Technol, Riyadh, Saudi Arabia
关键词
Deep Learning; Software Defect Prediction; Systematic Literature Review; Meta-Analysis; MEAN SQUARED ERROR; QUALITY;
D O I
10.1016/j.infsof.2023.107175
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Context: Despite recent attention given to Software Defect Prediction (SDP), the lack of any systematic effort to assess existing empirical evidence on the application of Deep Learning (DL) in SDP indicates that it is still relatively under-researched.Objective: To synthesize literature on SDP using DL, pertaining to measurements, models, techniques, datasets, and achievements; to obtain a full understanding of current SDP-related methodologies using DL; and to compare the DL models' performances with those of Machine Learning (ML) models in classifying software defects.Method: We completed a thorough review of the literature in this domain. To answer the research issues, results from primary investigations were synthesized. The preliminary findings for DL vs. ML in SDP were verified by using meta-analysis (MA).Result: We discovered 63 primary studies that passed the systematic literature review quality evaluation. However, only 19 primary studies passed the MA quality evaluation. The five most popular performance mea-surements employed in SDP were f-measure, recall, accuracy, precision, and Area Under the Curve (AUC). The top five DL techniques used in building SDP models were Convolutional Neural Network (CNN), Deep Neural Network (DNN), Long Short-Term Memory (LSTM), Deep Belief Network (DBN), and Stacked Denoising Autoencoder (SDAE). PROMISE and NASA datasets were found to be used more frequently to train and test DL models in SDP. The MA results show that DL was favored over ML in terms of study and dataset across accuracy, f-measure, and AUC.Conclusion: The application of DL in SDP remains a challenge, but it has the potential to achieve better predictive performance when the performance-influencing parameters are optimized. We provide a reference point for future research which could be used to improve research quality in this domain.
引用
收藏
页数:28
相关论文
共 50 条
  • [21] Software defect prediction using hybrid techniques: a systematic literature review
    Ruchika Malhotra
    Sonali Chawla
    Anjali Sharma
    Soft Computing, 2023, 27 : 8255 - 8288
  • [22] Forex market forecasting using machine learning: Systematic Literature Review and meta-analysis
    Ayitey Junior, Michael
    Appiahene, Peter
    Appiah, Obed
    Bombie, Christopher Ninfaakang
    JOURNAL OF BIG DATA, 2023, 10 (01)
  • [23] Forex market forecasting using machine learning: Systematic Literature Review and meta-analysis
    Michael Ayitey Junior
    Peter Appiahene
    Obed Appiah
    Christopher Ninfaakang Bombie
    Journal of Big Data, 10
  • [24] Deep learning for classifying the stages of periodontitis on dental images: a systematic review and meta-analysis
    Li, Xin
    Zhao, Dan
    Xie, Jinxuan
    Wen, Hao
    Liu, Chunhua
    Li, Yajie
    Li, Wenbin
    Wang, Songlin
    BMC ORAL HEALTH, 2023, 23 (01)
  • [25] Deep learning approach to predict autism spectrum disorder: a systematic review and meta-analysis
    Ding, Yang
    Zhang, Heng
    Qiu, Ting
    BMC PSYCHIATRY, 2024, 24 (01)
  • [26] Deep learning assisted segmentation of the lumbar intervertebral disc: a systematic review and meta-analysis
    Wang, Aobo
    Zou, Congying
    Yuan, Shuo
    Fan, Ning
    Du, Peng
    Wang, Tianyi
    Zang, Lei
    JOURNAL OF ORTHOPAEDIC SURGERY AND RESEARCH, 2024, 19 (01):
  • [27] Deep learning in CT image segmentation of cervical cancer: a systematic review and meta-analysis
    Chongze Yang
    Lan-hui Qin
    Yu-en Xie
    Jin-yuan Liao
    Radiation Oncology, 17
  • [28] Artificial neural networks and deep learning in urban geography: A systematic review and meta-analysis
    Grekousis, George
    COMPUTERS ENVIRONMENT AND URBAN SYSTEMS, 2019, 74 : 244 - 256
  • [29] Deep learning for cephalometric landmark detection: systematic review and meta-analysis
    Schwendicke, Falk
    Chaurasia, Akhilanand
    Arsiwala, Lubaina
    Lee, Jae-Hong
    Elhennawy, Karim
    Jost-Brinkmann, Paul-Georg
    Demarco, Flavio
    Krois, Joachim
    CLINICAL ORAL INVESTIGATIONS, 2021, 25 (07) : 4299 - 4309
  • [30] Impact of deep learning on pediatric elbow fracture detection: a systematic review and meta-analysis
    Binh, Le Nguyen
    Nhu, Nguyen Thanh
    Nhi, Pham Thi Uyen
    Son, Do Le Hoang
    Bach, Nguyen
    Huy, Hoang Quoc
    Le, Nguyen Quoc Khanh
    Kang, Jiunn-Horng
    EUROPEAN JOURNAL OF TRAUMA AND EMERGENCY SURGERY, 2025, 51 (01)