CT radiomics models are unable to predict new liver metastasis after successful thermal ablation of colorectal liver metastases

被引:12
作者
Taghavi, Marjaneh [1 ,2 ]
Staal, Femke C. R. [1 ,2 ]
Simoes, Rita [3 ]
Hong, Eun K. [1 ,2 ,4 ]
Lambregts, Doenja M. J. [1 ]
van der Heide, Uulke A. [3 ]
Beets-Tan, Regina G. H. [1 ,2 ,5 ]
Maas, Monique [1 ]
机构
[1] Netherlands Canc Inst, Dept Radiol, Amsterdam, Netherlands
[2] Maastricht Univ, Med Ctr, GROW Sch Oncol & Dev Biol, Maastricht, Netherlands
[3] Netherland Canc Inst, Dept Radiotherapy, Amsterdam, Netherlands
[4] Seoul Natl Univ Hosp, Seoul, South Korea
[5] Univ Southern Denmark, Inst Reg Hlth Res, Odense, Denmark
关键词
X-ray computed tomography; colorectal cancer; liver neoplasms; liver ablation; machine learning; PERCUTANEOUS RADIOFREQUENCY ABLATION; TEXTURE ANALYSIS; CANCER;
D O I
10.1177/02841851211060437
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background Patients with colorectal liver metastases (CRLM) who undergo thermal ablation are at risk of developing new CRLM after ablation. Identification of these patients might enable individualized treatment. Purpose To investigate whether an existing machine-learning model with radiomics features based on pre-ablation computed tomography (CT) images of patients with colorectal cancer can predict development of new CRLM. Material and Methods In total, 94 patients with CRLM who were treated with thermal ablation were analyzed. Radiomics features were extracted from the healthy liver parenchyma of CT images in the portal venous phase, before thermal ablation. First, a previously developed radiomics model (Original model) was applied to the entire cohort to predict new CRLM after 6 and 24 months of follow-up. Next, new machine-learning models were developed (Radiomics, Clinical, and Combined), based on radiomics features, clinical features, or a combination of both. Results The external validation of the Original model reached an area under the curve (AUC) of 0.57 (95% confidence interval [CI]=0.56-0.58) and 0.52 (95% CI=0.51-0.53) for 6 and 24 months of follow-up. The new predictive radiomics models yielded a higher performance at 6 months compared to 24 months. For the prediction of CRLM at 6 months, the Combined model had slightly better performance (AUC=0.60; 95% CI=0.59-0.61) compared to the Radiomics and Clinical models (AUC=0.55-0.57), while all three models had a low performance for the prediction at 24 months (AUC=0.52-0.53). Conclusion Both the Original and newly developed radiomics models were unable to predict new CLRM based on healthy liver parenchyma in patients who will undergo ablation for CRLM.
引用
收藏
页码:5 / 12
页数:8
相关论文
共 26 条
[11]   A Single-Center Retrospective Analysis of Periprocedural Variables Affecting Local Tumor Progression after Radiofrequency Ablation of Colorectal Cancer Liver Metastases [J].
Han, Kichang ;
Kim, Jin Hyoung ;
Yang, Seul Gi ;
Park, Seong Ho ;
Choi, Hyun-Kyung ;
Chun, Seng-Yong ;
Kim, Pyo Nyun ;
Park, Jihong ;
Lee, Myeongjee .
RADIOLOGY, 2021, 298 (01) :212-218
[12]   Radiomics: the bridge between medical imaging and personalized medicine [J].
Lambin, Philippe ;
Leijenaar, Ralph T. H. ;
Deist, Timo M. ;
Peerlings, Jurgen ;
de Jong, Evelyn E. C. ;
van Timmeren, Janita ;
Sanduleanu, Sebastian ;
Larue, Ruben T. H. M. ;
Even, Aniek J. G. ;
Jochems, Arthur ;
van Wijk, Yvonka ;
Woodruff, Henry ;
van Soest, Johan ;
Lustberg, Tim ;
Roelofs, Erik ;
van Elmpt, Wouter ;
Dekker, Andre ;
Mottaghy, Felix M. ;
Wildberger, Joachim E. ;
Walsh, Sean .
NATURE REVIEWS CLINICAL ONCOLOGY, 2017, 14 (12) :749-762
[13]   Follow-up after radiological intervention in oncology: ECIO-ESOI evidence and consensus-based recommendations for clinical practice [J].
Maas, Monique ;
Beets-Tan, Regina ;
Gaubert, Jean-Yves ;
Gomez Munoz, Fernando ;
Habert, Paul ;
Klompenhouwer, Lisa G. ;
Morgado, Paulo Vilares ;
Schaefer, Niklaus ;
Cornelis, Francois H. ;
Solomon, Stephen B. ;
van der Reijd, Denise ;
Bilbao, Jose Ignacio .
INSIGHTS INTO IMAGING, 2020, 11 (01)
[14]   Effect of tube current on computed tomography radiomic features [J].
Mackin, Dennis ;
Ger, Rachel ;
Dodge, Cristina ;
Fave, Xenia ;
Chi, Pai-Chun ;
Zhang, Lifei ;
Yang, Jinzhong ;
Bache, Steve ;
Dodge, Charles ;
Jones, A. Kyle ;
Court, Laurence .
SCIENTIFIC REPORTS, 2018, 8
[15]   Measuring Computed Tomography Scanner Variability of Radiomics Features [J].
Mackin, Dennis ;
Fave, Xenia ;
Zhang, Lifei ;
Fried, David ;
Yang, Jinzhong ;
Taylor, Brian ;
Rodriguez-Rivera, Edgardo ;
Dodge, Cristina ;
Jones, Aaron Kyle ;
Court, Laurence .
INVESTIGATIVE RADIOLOGY, 2015, 50 (11) :757-765
[16]   Radiofrequency Ablation as First-Line Treatment in Patients With Early Colorectal Liver Metastases Amenable to Surgery [J].
Otto, Gerd ;
Dueber, Christoph ;
Hoppe-Lotichius, Maria ;
Koenig, Jochem ;
Heise, Michael ;
Pitton, Michael Bernhard .
ANNALS OF SURGERY, 2010, 251 (05) :796-803
[17]   Colorectal liver metastases: surgery versus thermal ablation (COLLISION) - a phase III single-blind prospective randomized controlled trial [J].
Puijk, Robbert S. ;
Ruarus, Alette H. ;
Vroomen, Laurien G. P. H. ;
van Tilborg, Aukje A. J. M. ;
Scheffer, Hester J. ;
Nielsen, Karin ;
de Jong, Marcus C. ;
de Vries, Jan J. J. ;
Zonderhuis, Babs M. ;
Eker, Hasan H. ;
Kazemier, Geert ;
Verheul, Henk ;
van der Meijs, Bram B. ;
van Dam, Laura ;
Sorgedrager, Natasha ;
Coupe, Veerle M. H. ;
van den Tol, Petrousjka M. P. ;
Meijerink, Martijn R. .
BMC CANCER, 2018, 18
[18]   Whole-liver CT texture analysis in colorectal cancer: Does the presence of liver metastases affect the texture of the remaining liver? [J].
Rao, Sheng-Xiang ;
Lambregts, Doenja M. J. ;
Schnerr, Roald S. ;
van Ommen, Wenzel ;
van Nijnatten, Thiemo J. A. ;
Martens, Milou H. ;
Heijnen, Luc A. ;
Backes, Walter H. ;
Verhoef, Cornelis ;
Zeng, Meng-Su ;
Beets, Geerard L. ;
Beets-Tan, Regina G. H. .
UNITED EUROPEAN GASTROENTEROLOGY JOURNAL, 2014, 2 (06) :530-538
[19]   Radiofrequency ablation combined with systemic treatment versus systemic treatment alone in patients with non-resectable colorectal liver metastases: a randomized EORTC Intergroup phase II study (EORTC 40004) [J].
Ruers, T. ;
Punt, C. ;
Van Coevorden, F. ;
Pierie, J. P. E. N. ;
Borel-Rinkes, I. ;
Ledermann, J. A. ;
Poston, G. ;
Bechstein, W. ;
Lentz, M. A. ;
Mauer, M. ;
Van Cutsem, E. ;
Lutz, M. P. ;
Nordlinger, B. .
ANNALS OF ONCOLOGY, 2012, 23 (10) :2619-2626
[20]   Percutaneous Microwave versus Radiofrequency Ablation of Colorectal Liver Metastases: Ablation with Clear Margins (AO) Provides the Best Local Tumor Control [J].
Shady, Waleed ;
Petre, Elena N. ;
Do, Kinh Gian ;
Gonen, Mithat ;
Yarmohammadi, Hooman ;
Brown, Karen T. ;
Kemeny, Nancy E. ;
D'Angelica, Michael ;
Kingham, Peter T. ;
Solomon, Stephen B. ;
Sofocleous, Constantinos T. .
JOURNAL OF VASCULAR AND INTERVENTIONAL RADIOLOGY, 2018, 29 (02) :268-275