CT radiomics models are unable to predict new liver metastasis after successful thermal ablation of colorectal liver metastases

被引:12
作者
Taghavi, Marjaneh [1 ,2 ]
Staal, Femke C. R. [1 ,2 ]
Simoes, Rita [3 ]
Hong, Eun K. [1 ,2 ,4 ]
Lambregts, Doenja M. J. [1 ]
van der Heide, Uulke A. [3 ]
Beets-Tan, Regina G. H. [1 ,2 ,5 ]
Maas, Monique [1 ]
机构
[1] Netherlands Canc Inst, Dept Radiol, Amsterdam, Netherlands
[2] Maastricht Univ, Med Ctr, GROW Sch Oncol & Dev Biol, Maastricht, Netherlands
[3] Netherland Canc Inst, Dept Radiotherapy, Amsterdam, Netherlands
[4] Seoul Natl Univ Hosp, Seoul, South Korea
[5] Univ Southern Denmark, Inst Reg Hlth Res, Odense, Denmark
关键词
X-ray computed tomography; colorectal cancer; liver neoplasms; liver ablation; machine learning; PERCUTANEOUS RADIOFREQUENCY ABLATION; TEXTURE ANALYSIS; CANCER;
D O I
10.1177/02841851211060437
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background Patients with colorectal liver metastases (CRLM) who undergo thermal ablation are at risk of developing new CRLM after ablation. Identification of these patients might enable individualized treatment. Purpose To investigate whether an existing machine-learning model with radiomics features based on pre-ablation computed tomography (CT) images of patients with colorectal cancer can predict development of new CRLM. Material and Methods In total, 94 patients with CRLM who were treated with thermal ablation were analyzed. Radiomics features were extracted from the healthy liver parenchyma of CT images in the portal venous phase, before thermal ablation. First, a previously developed radiomics model (Original model) was applied to the entire cohort to predict new CRLM after 6 and 24 months of follow-up. Next, new machine-learning models were developed (Radiomics, Clinical, and Combined), based on radiomics features, clinical features, or a combination of both. Results The external validation of the Original model reached an area under the curve (AUC) of 0.57 (95% confidence interval [CI]=0.56-0.58) and 0.52 (95% CI=0.51-0.53) for 6 and 24 months of follow-up. The new predictive radiomics models yielded a higher performance at 6 months compared to 24 months. For the prediction of CRLM at 6 months, the Combined model had slightly better performance (AUC=0.60; 95% CI=0.59-0.61) compared to the Radiomics and Clinical models (AUC=0.55-0.57), while all three models had a low performance for the prediction at 24 months (AUC=0.52-0.53). Conclusion Both the Original and newly developed radiomics models were unable to predict new CLRM based on healthy liver parenchyma in patients who will undergo ablation for CRLM.
引用
收藏
页码:5 / 12
页数:8
相关论文
共 26 条
[1]   Whole liver CT texture analysis to predict the development of colorectal liver metastases-A multicentre study [J].
Beckers, Rianne C. J. ;
Lambregts, Doenja M. J. ;
Schnerr, Roald S. ;
Maas, Monique ;
Rao, Sheng-Xiang ;
Kessels, Alfons G. H. ;
Thywissen, Thomas ;
Beets, Geerard L. ;
Trebeschi, Stefano ;
Houwers, Janneke B. ;
Dejong, Cornelis H. ;
Verhoef, Cornelis ;
Beets-Tan, Regina G. H. .
EUROPEAN JOURNAL OF RADIOLOGY, 2017, 92 :64-71
[2]  
BUCK SF, 1960, J ROY STAT SOC B, V22, P302
[3]   The Dark Side of Radiomics: On the Paramount Importance of Publishing Negative Results [J].
Buvat, Irene ;
Orlhac, Fanny .
JOURNAL OF NUCLEAR MEDICINE, 2019, 60 (11) :1543-1544
[4]  
Cox DD., P 12 PYTH SCI C SCIP, P13
[5]   CIRSE Standards of Practice on Thermal Ablation of Liver Tumours [J].
Crocetti, Laura ;
de Baere, Thierry ;
Pereira, Philippe L. ;
Tarantino, Francesco Paolo .
CARDIOVASCULAR AND INTERVENTIONAL RADIOLOGY, 2020, 43 (07) :951-962
[6]  
Federatie Medisch Specialisten, 2019, RICHTL COL CARC
[7]   3D Slicer as an image computing platform for the Quantitative Imaging Network [J].
Fedorov, Andriy ;
Beichel, Reinhard ;
Kalpathy-Cramer, Jayashree ;
Finet, Julien ;
Fillion-Robin, Jean-Christophe ;
Pujol, Sonia ;
Bauer, Christian ;
Jennings, Dominique ;
Fennessy, Fiona ;
Sonka, Milan ;
Buatti, John ;
Aylward, Stephen ;
Miller, James V. ;
Pieper, Steve ;
Kikinis, Ron .
MAGNETIC RESONANCE IMAGING, 2012, 30 (09) :1323-1341
[8]   Texture analysis in non-contrast enhanced CT: Impact of malignancy on texture in apparently disease-free areas of the liver [J].
Ganeshan, Balaji ;
Miles, Kenneth A. ;
Young, Rupert C. D. ;
Chatwin, Chris R. .
EUROPEAN JOURNAL OF RADIOLOGY, 2009, 70 (01) :101-110
[9]   Thermal ablation of colorectal liver metastases: a position paper by an international panel of ablation experts, the interventional oncology sans frontiSres meeting 2013 [J].
Gillams, Alice ;
Goldberg, Nahum ;
Ahmed, Muneeb ;
Bale, Reto ;
Breen, David ;
Callstrom, Matthew ;
Chen, Min Hua ;
Choi, Byung Ihn ;
de Baere, Thierry ;
Dupuy, Damian ;
Gangi, Afshin ;
Gervais, Debra ;
Helmberger, Thomas ;
Jung, Ernst-Michael ;
Lee, Fred ;
Lencioni, Riccardo ;
Liang, Ping ;
Livraghi, Tito ;
Lu, David ;
Meloni, Franca ;
Pereira, Philippe ;
Piscaglia, Fabio ;
Rhim, Hyunchul ;
Salem, Riad ;
Sofocleous, Constantinos ;
Solomon, Stephen B. ;
Soulen, Michael ;
Tanaka, Masatoshi ;
Vogl, Thomas ;
Wood, Brad ;
Solbiati, Luigi .
EUROPEAN RADIOLOGY, 2015, 25 (12) :3438-3454
[10]   Radiomics: Images Are More than Pictures, They Are Data [J].
Gillies, Robert J. ;
Kinahan, Paul E. ;
Hricak, Hedvig .
RADIOLOGY, 2016, 278 (02) :563-577