Developing a High Ductility Mg Alloy Via Non-basal Slips and Intergranular Coordination Induced by Li and Er Addition

被引:4
作者
Tang, Ruyue [1 ]
Zhang, Jing [1 ,2 ]
Li, Bingcheng [1 ]
Dong, Quan [1 ]
机构
[1] Chongqing Univ, Coll Mat Sci & Engn, Chongqing 400044, Peoples R China
[2] Chongqing Univ, Natl Engn Res Ctr Magnesium Alloy, Chongqing 400044, Peoples R China
关键词
Magnesium alloys; Li and Er addition; Ductility; Non-basal slip; Deformation mechanism; ENHANCED DUCTILITY; GRAIN-BOUNDARIES; 1ST-PRINCIPLES; CA;
D O I
10.1007/s12540-023-01620-6
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The poor ductility of magnesium (Mg) alloys at room temperature restricts its large-scale usage in industry. In this work, we design low-alloying Mg-3Li-xEr(x = 0.2, 0.8 wt%) alloys with high ductility. Quasi-in-situ electron back-scatter diffraction observation, combined with slip trace analysis and in-grain misorientation axes analysis, was carried out to systematically characterize the microstructural evolution and slip deformation mode during the tensile deformation of the Mg-3Li-xEr alloys. The results showed that the synergy effect of solute Li and Er dramatically reduces the critical resolved shear stress ratios between non-basal and basal slip, thus contributing to the activation of considerable non-basal dislocations. Additionally, Er microalloying increases the frequency of grain boundaries with misorientation angles (theta(s)) being in the range of 75 < theta s < 90 degrees, enhancing intergranular coordination ability by activating more basal-slip-induced prismatic < a > slips.
引用
收藏
页码:1849 / 1863
页数:15
相关论文
共 38 条
[1]   Transmission electron microscopy investigation of ⟨c+a⟩ dislocations in Mg and α-solid solution Mg-Li alloys [J].
Agnew, SR ;
Horton, JA ;
Yoo, MH .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2002, 33 (03) :851-858
[2]   A criterion for slip transfer at grain boundaries in Al [J].
Alizadeh, R. ;
Pena-Ortega, M. ;
Bieler, T. R. ;
LLorca, J. .
SCRIPTA MATERIALIA, 2020, 178 (178) :408-412
[3]   Non-basal slips in magnesium and magnesium-lithium alloy single crystals [J].
Ando, S ;
Tonda, H .
MAGNESIUM ALLOYS 2000, 2000, 350-3 :43-48
[4]   Grain boundaries and interfaces in slip transfer [J].
Bieler, T. R. ;
Eisenlohr, P. ;
Zhang, C. ;
Phukan, H. J. ;
Crimp, M. A. .
CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2014, 18 (04) :212-226
[5]   Effect of grain size on slip activity in pure magnesium polycrystals [J].
Cepeda-Jimenez, C. M. ;
Molina-Aldareguia, J. M. ;
Perez-Prado, M. T. .
ACTA MATERIALIA, 2015, 84 :443-456
[6]   Distribution Characteristics of In-Grain Misorientation Axes in Cold-Rolled Commercially Pure Titanium and Their Correlation with Active Slip Modes [J].
Chun, Y. B. ;
Battaini, M. ;
Davies, C. H. J. ;
Hwang, S. K. .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2010, 41A (13) :3473-3487
[7]  
Couling SL., 1959, ASM Trans, V51, P94
[8]   Effect of alloying elements on the elastic properties of Mg from first-principles calculations [J].
Ganeshan, S. ;
Shang, S. L. ;
Wang, Y. ;
Liu, Z. -K. .
ACTA MATERIALIA, 2009, 57 (13) :3876-3884
[9]   Texture development in pure Mg and Mg alloy AZ31 [J].
Gottstein, G ;
Al Samman, T .
ICOTOM 14: TEXTURES OF MATERIALS, PTS 1AND 2, 2005, 495-497 :623-632
[10]   Effective values of critical resolved shear stress for slip in polycrystalline magnesium and other hcp metals [J].
Hutchinson, W. B. ;
Barnett, M. R. .
SCRIPTA MATERIALIA, 2010, 63 (07) :737-740