Gravitational traces of bumblebee gravity in metric-affine formalism

被引:17
|
作者
Araujo Filho, A. A. [1 ,2 ,3 ]
Hassanabadi, H. [4 ,5 ]
Heidari, N. [5 ]
Kriz, J. [4 ]
Zare, S. [4 ]
机构
[1] Univ Valencia, CSIC, Dept Fis Teor, Ctr MIxto Univ Valencia, Burjassot 46100, Valencia, Spain
[2] Univ Valencia, Ctr Mixto Univ Valencia, IFIC, CSIC, Burjassot 46100, Valencia, Spain
[3] Univ Fed Paraiba, Dept Fis, Caixa Postal 5008, BR-58051970 Joao Pessoa, PB, Brazil
[4] Univ Hradec Kralove, Dept Phys, Rokitanskeho 62, Hradec Kralove 50003, Czech Republic
[5] Shahrood Univ Technol, Phys Dept, Shahrood, Iran
关键词
bumblebee gravity; metric affine formalism; shadows; QUASI-NORMAL MODES; HOLE NORMAL-MODES; BLACK-HOLES; GAUGE-THEORY; WKB APPROACH; FOUNDATIONS; EVOLUTION; SHADOW; STARS;
D O I
10.1088/1361-6382/ad1712
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
This work explores various manifestations of bumblebee gravity within the metric-affine formalism. We investigate the impact of the Lorentz violation parameter, denoted as X, on the modification of the Hawking temperature. Our calculations reveal that as X increases, the values of the Hawking temperature attenuate. To examine the behavior of massless scalar perturbations, specifically the quasinormal modes, we employ the Wentzel-Kramers-Brillouin method. The transmission and reflection coefficients are determined through our calculations. The outcomes indicate that a stronger Lorentz-violating parameter results in slower damping oscillations of gravitational waves. To comprehend the influence of the quasinormal spectrum on time-dependent scattering phenomena, we present a detailed analysis of scalar perturbations in the time-domain solution. Additionally, we conduct an investigation on shadows, revealing that larger values of X correspond to larger shadow radii. Furthermore, we constrain the magnitude of the shadow radii using the EHT horizon-scale image of SgrA* . Finally, we calculate both the time delay and the deflection angle.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Inflation in metric-affine quadratic gravity
    Gialamas, Ioannis D.
    Tamvakis, Kyriakos
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2023, (03):
  • [22] Cosmology of quadratic metric-affine gravity
    Iosifidis, Damianos
    Ravera, Lucrezia
    PHYSICAL REVIEW D, 2022, 105 (02)
  • [23] Colliding waves in metric-affine gravity
    Garcia, A
    Lammerzahl, C
    Macias, A
    Mielke, EW
    Socorro, J
    PHYSICAL REVIEW D, 1998, 57 (06) : 3457 - 3462
  • [24] Observational constraints in metric-affine gravity
    Sebastian Bahamonde
    Jorge Gigante Valcarcel
    The European Physical Journal C, 2021, 81
  • [25] On the dilation current in metric-affine gravity
    Kenzhalin, D.
    Myrzakul, S.
    Myrzakulov, R.
    Ravera, L.
    ANNALS OF PHYSICS, 2024, 465
  • [26] Plane waves in metric-affine gravity
    Obukhov, YN
    PHYSICAL REVIEW D, 2006, 73 (02):
  • [27] Effectively nonlocal metric-affine gravity
    Golovnev, Alexey
    Koivisto, Tomi
    Sandstad, Marit
    PHYSICAL REVIEW D, 2016, 93 (06):
  • [28] Testing metric-affine f(R)-gravity by relic scalar gravitational waves
    Capozziello, S.
    Cianci, R.
    De Laurentis, M.
    Vignolo, S.
    EUROPEAN PHYSICAL JOURNAL C, 2010, 70 (1-2): : 341 - 349
  • [29] Quasinormal modes, and different aspects of Hawking radiation within the metric-affine bumblebee gravity framework
    Jha, Sohan Kumar
    Rahaman, Anisur
    NUCLEAR PHYSICS B, 2024, 1002
  • [30] Testing metric-affine f(R)-gravity by relic scalar gravitational waves
    S. Capozziello
    R. Cianci
    M. De Laurentis
    S. Vignolo
    The European Physical Journal C, 2010, 70 : 341 - 349