Flexible wood-based triboelectric nanogenerator for versatile self-powered sensing

被引:13
作者
Liao, Jiaqi [1 ]
Wang, Yuanyuan [1 ]
Shi, Shitao [1 ]
Liu, Chencong [1 ]
Sun, Qingfeng [1 ]
Shen, Xiaoping [1 ]
机构
[1] Zhejiang A&F Univ, Coll Chem & Mat Engn, Hangzhou 311300, Peoples R China
基金
中国国家自然科学基金;
关键词
Wood; Triboelectric nanogenerators; Self -powered sensor; Flexible electronics; CELLULOSE NANOCRYSTALS; ENERGY; FABRICATION; SILANE; UNIT;
D O I
10.1016/j.susmat.2023.e00771
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
With the continuous advancement of internet of things, big data, and artificial intelligence technologies, selfpowered functionalized applications have emerged as pivotal components in the realm of smart technology. Here, we present a flexible and environmentally sustainable wood-based triboelectric nanogenerator (W-TENG) that enables the self-powered functionalization of applications in the emerging smart field. By employing a straightforward yet effective approach utilizing natural balsa wood, the W-TENG exhibits remarkable flexibility, stability, and sensitivity. Notably, balsa wood possesses a lower weight, density, and crystallinity compared to other types of natural wood, resulting in thinner internal cell walls, larger individual cells and a more porous structure. These characteristics prove particularly advantageous for solvent modification. Given the prevalent use of wood materials in domestic construction, the energy-efficient W-TENG can be seamlessly integrated into various smart applications, including wireless switches, home flooring, and energy-saving lamps. Moreover, this integration offers several benefits such as cost-effectiveness, high durability, ease of processing, and environmental friendliness. This research not only expands the range of self-powered applications in the smart sector but also drives the development of eco-friendly W-TENG electronics.
引用
收藏
页数:11
相关论文
共 50 条
[1]   Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications [J].
Al-Fuqaha, Ala ;
Guizani, Mohsen ;
Mohammadi, Mehdi ;
Aledhari, Mohammed ;
Ayyash, Moussa .
IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2015, 17 (04) :2347-2376
[2]   The Mosaic of Surface Charge in Contact Electrification [J].
Baytekin, H. T. ;
Patashinski, A. Z. ;
Branicki, M. ;
Baytekin, B. ;
Soh, S. ;
Grzybowski, B. A. .
SCIENCE, 2011, 333 (6040) :308-312
[3]   Roll-to-Roll Green Transfer of CVD Graphene onto Plastic for a Transparent and Flexible Triboelectric Nanogenerator [J].
Chandrashekar, Bananakere Nanjegowda ;
Deng, Bing ;
Smitha, Ankanahalli Shankaregowda ;
Chen, Yubin ;
Tan, Congwei ;
Zhang, Haixia ;
Peng, Hailin ;
Liu, Zhongfan .
ADVANCED MATERIALS, 2015, 27 (35) :5210-5216
[4]  
Chen CJ, 2017, ENERG ENVIRON SCI, V10, P538, DOI [10.1039/C6EE03716J, 10.1039/c6ee03716j]
[5]   A Vision of IoT: Applications, Challenges, and Opportunities With China Perspective [J].
Chen, Shanzhi ;
Xu, Hui ;
Liu, Dake ;
Hu, Bo ;
Wang, Hucheng .
IEEE INTERNET OF THINGS JOURNAL, 2014, 1 (04) :349-359
[6]   Effects of Cellulose, Hemicellulose, and Lignin on the Structure and Morphology of Porous Carbons [J].
Deng, Jiang ;
Xiong, Tianyi ;
Wang, Haiyan ;
Zheng, Anmin ;
Wang, Yong .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2016, 4 (07) :3750-3756
[7]   An intelligent skin based self-powered finger motion sensor integrated with triboelectric nanogenerator [J].
Dhakar, Lokesh ;
Pitchappa, Prakash ;
Tay, Francis Eng Hock ;
Lee, Chengkuo .
NANO ENERGY, 2016, 19 :532-540
[8]   A triboelectric nanogenerator for mechanical energy harvesting and as self-powered pressure sensor [J].
Ding, Zhuyu ;
Zou, Ming ;
Yao, Peng ;
Fan, Li .
MICROELECTRONIC ENGINEERING, 2022, 257
[9]   Environmentally Benign Wood Modifications: A Review [J].
Dong, Youming ;
Wang, Kaili ;
Li, Jianzhang ;
Zhang, Shifeng ;
Shi, Sheldon Q. .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2020, 8 (09) :3532-3540
[10]   Flexible triboelectric generator! [J].
Fan, Feng-Ru ;
Tian, Zhong-Qun ;
Wang, Zhong Lin .
NANO ENERGY, 2012, 1 (02) :328-334