Dynamic prediction of malignant ventricular arrhythmias using neural networks in patients with an implantable cardioverter-defibrillator

被引:8
作者
Kolk, Maarten Z. H. [1 ,10 ]
Ruiperez-Campillo, Samuel [2 ,3 ,8 ,9 ]
Alvarez-Florez, Laura [4 ]
Deb, Brototo [2 ,3 ]
Bekkers, Erik J. [5 ]
Allaart, Cornelis P. [6 ]
Lingen, Anne-Lotte C. J. Van Der [6 ]
Clopton, Paul [2 ,3 ]
Isgum, Ivana [4 ,5 ,7 ]
Wilde, Arthur A. M. [10 ]
Knops, Reinoud E. [1 ,10 ]
Narayan, Sanjiv M. [2 ,3 ]
Tjong, Fleur V. Y. [1 ,2 ,3 ,10 ,11 ]
机构
[1] Univ Amsterdam, Amsterdam UMC, Dept Clin & Expt Cardiol, Heart Ctr, Meibergdreef 9, Amsterdam, Netherlands
[2] Stanford Univ, Dept Med, Stanford, CA USA
[3] Stanford Univ, Cardiovasc Inst, Stanford, CA USA
[4] Univ Amsterdam, Amsterdam Univ Med Ctr, Dept Biomed Engn & Phys, Meibergdreef 9, Amsterdam, Netherlands
[5] Univ Amsterdam, Fac Sci, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands
[6] Vrije Univ Amsterdam Med Ctr, Dept Cardiol, Amsterdam UMC, De Boelelaan 1118, NL-1118 Amsterdam, Netherlands
[7] Univ Amsterdam, Amsterdam UMC, Dept Radiol & Nucl Med, Meibergdreef 9, Amsterdam, Netherlands
[8] Swiss Fed Inst Technol Zurich ETHz, Dept Informat Technol & Elect Engn, Gloriastr 35, Zurich, Switzerland
[9] Univ Politecn Valencia, ITACA Inst, Camino Vera S-N, Valencia, Spain
[10] Amsterdam Cardiovasc Sci, Heart Failure & Arrhythmias, Amsterdam, Netherlands
[11] Univ Amsterdam, Heart Ctr, NL-1105 AZ Amsterdam, Netherlands
来源
EBIOMEDICINE | 2024年 / 99卷
基金
荷兰研究理事会;
关键词
Cardiology; Machine learning; Deep learning; Electrocardiography; Sudden cardiac death; SUDDEN CARDIAC DEATH; SURVIVAL; RISK; CHALLENGES; ALTERNANS;
D O I
10.1016/j.ebiom.2023.104937
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background Risk stratification for ventricular arrhythmias currently relies on static measurements that fail to adequately capture dynamic interactions between arrhythmic substrate and triggers over time. We trained and internally validated a dynamic machine learning (ML) model and neural network that extracted features from longitudinally collected electrocardiograms (ECG), and used these to predict the risk of malignant ventricular arrhythmias. Methods A multicentre study in patients implanted with an implantable cardioverter-defibrillator (ICD) between 2007 and 2021 in two academic hospitals was performed. Variational autoencoders (VAEs), which combine neural networks with variational inference principles, and can learn patterns and structure in data without explicit labelling, were trained to encode the mean ECG waveforms from the limb leads into 16 variables. Supervised dynamic ML models using these latent ECG representations and clinical baseline information were trained to predict malignant ventricular arrhythmias treated by the ICD. Model performance was evaluated on a hold-out set, using time-dependent receiver operating characteristic (ROC) and calibration curves. Findings 2942 patients (61.7 +/- 13.9 years, 25.5% female) were included, with a total of 32,129 ECG recordings during a mean follow-up of 43.9 +/- 35.9 months. The mean time-varying area under the ROC curve for the dynamic model was 0.738 +/- 0.07, compared to 0.639 +/- 0.03 for a static (i.e. baseline-only model). Feature analyses indicated dynamic changes in latent ECG representations, particularly those affecting the T-wave morphology, were of highest importance for model predictions. Interpretation Dynamic ML models and neural networks effectively leverage routinely collected longitudinal ECG recordings for personalised and updated predictions of malignant ventricular arrhythmias, outperforming static models. Funding This publication is part of the project DEEP RISK ICD (with project number 452019308) of the research programme Rubicon which is (partly) financed by the Dutch Research Council (NWO). This research is partly funded by the Amsterdam Cardiovascular Sciences (personal grant F.V.Y.T). Copyright (c) 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Effect of Coronary Artery Bypass Grafting on Left Ventricular Ejection Fraction in Men Eligible for Implantable Cardioverter-Defibrillator
    Vakil, Kairav
    Florea, Viorel
    Koene, Ryan
    Kealhofer, Jessica Voight
    Anand, Inderjit
    Adabag, Selcuk
    AMERICAN JOURNAL OF CARDIOLOGY, 2016, 117 (06) : 957 - 960
  • [42] Ventricular arrhythmia burden and implantable cardioverter-defibrillator outcomes in transthyretin cardiac amyloidosis
    Brown, Matthew T.
    Yalamanchili, Sreeram
    Evans, Sean T.
    Ram, Pradhum
    Blank, Evan A.
    Lyle, Melissa A.
    Merchant, Faisal M.
    Bhatt, Kunal N.
    PACE-PACING AND CLINICAL ELECTROPHYSIOLOGY, 2022, 45 (04): : 443 - 451
  • [43] Implantable cardioverter-defibrillator use in catecholaminergic polymorphic ventricular tachycardia: A systematic review
    Roston, Thomas M.
    Jones, Karolina
    Hawkins, Nathaniel M.
    Bos, J. Martijn
    Schwartz, Peter J.
    Perry, Frances
    Ackerman, Michael J.
    Laksman, Zachary W. M.
    Kaul, Padma
    Lieve, Krystien V. V.
    Atallah, Joseph
    Krahn, Andrew D.
    Sanatani, Shubhayan
    HEART RHYTHM, 2018, 15 (12) : 1791 - 1799
  • [44] Prediction of benefits from prophylactic implantable cardioverter-defibrillator therapy
    Huikuri, Heikki V.
    INTERNATIONAL JOURNAL OF CARDIOLOGY, 2017, 243 : 274 - 275
  • [45] Effect of first ventricular tachycardia cycle length on rate of ventricular arrhythmia recurrence in patients with implantable cardioverter-defibrillator
    Arya, Arash
    Haghjoo, Majid
    Nikoo, Mohammad Hosein
    Dehghani, Mohammad Reza
    Fazelifar, Amir Farjam
    Sadr-Ameli, Mohammad Ali
    JOURNAL OF ELECTROCARDIOLOGY, 2006, 39 (04) : 404 - 408
  • [46] Exercise and competitive sports in patients with an implantable cardioverter-defibrillator
    Heidbuchel, Hein
    Carre, Francois
    EUROPEAN HEART JOURNAL, 2014, 35 (44) : 3097 - 3102
  • [47] Incidence of Appropriate Cardioverter-Defibrillator Shocks and Mortality in Patients With Heart Failure Treated With Combined Cardiac Resynchronization Plus Implantable Cardioverter-Defibrillator Therapy Versus Implantable Cardioverter-Defibrillator Therapy
    Desai, Harit
    Aronow, Wilbert S.
    Ahn, Chul
    Tsai, Fausan S.
    Lai, Hoang M.
    Gandhi, Kaushang
    Amin, Harshad
    Frishman, William H.
    Kalapatapu, Kumar
    Cohen, Martin
    Sorbera, Carmine
    JOURNAL OF CARDIOVASCULAR PHARMACOLOGY AND THERAPEUTICS, 2010, 15 (01) : 37 - 40
  • [48] Clinical implications of left ventricular assist device implantation in patients with an implantable cardioverter-defibrillator
    Boudghene-Stambouli, Fanny
    Boule, Stephane
    Goeminne, Celine
    Botcherby, Edward
    Marquie, Christelle
    Kouakam, Claude
    Guedon-Moreau, Laurence
    Schurtz, Guillaume
    de Groote, Pascal
    Lamblin, Nicolas
    Fertin, Marie
    Robin, Emmanuel
    Brigadeau, Francois
    Klug, Didier
    Lacroix, Dominique
    Meurice, Jonathan
    Wissocque, Ludivine
    Vincentelli, Andre
    Kacet, Salem
    JOURNAL OF INTERVENTIONAL CARDIAC ELECTROPHYSIOLOGY, 2014, 39 (02) : 177 - 184
  • [49] Ventricular electrical delay as a predictor of arrhythmias in patients with cardiac resynchronization implantable cardioverter defibrillator
    Elsaid, Ossama
    Gulati, Vinay
    Tecson, Kristen
    Friedman, Meir
    Kluger, Jeffrey
    SCANDINAVIAN CARDIOVASCULAR JOURNAL, 2018, 52 (06) : 356 - 361
  • [50] Long-Term Prognosis of Patients with an Implantable Cardioverter-Defibrillator in Korea
    Uhm, Jae-Sun
    Kim, Tae-Hoon
    Kim, In-Cheol
    Park, Young-Ah
    Shin, Dong Geum
    Lim, Yeong-Min
    Yu, Hee-Tae
    Yang, Pil-Sung
    Pak, Hui-Nam
    Kang, Seok-Min
    Lee, Moon-Hyoung
    Joung, Boyoung
    YONSEI MEDICAL JOURNAL, 2017, 58 (03) : 514 - 520