Dynamic prediction of malignant ventricular arrhythmias using neural networks in patients with an implantable cardioverter-defibrillator

被引:8
作者
Kolk, Maarten Z. H. [1 ,10 ]
Ruiperez-Campillo, Samuel [2 ,3 ,8 ,9 ]
Alvarez-Florez, Laura [4 ]
Deb, Brototo [2 ,3 ]
Bekkers, Erik J. [5 ]
Allaart, Cornelis P. [6 ]
Lingen, Anne-Lotte C. J. Van Der [6 ]
Clopton, Paul [2 ,3 ]
Isgum, Ivana [4 ,5 ,7 ]
Wilde, Arthur A. M. [10 ]
Knops, Reinoud E. [1 ,10 ]
Narayan, Sanjiv M. [2 ,3 ]
Tjong, Fleur V. Y. [1 ,2 ,3 ,10 ,11 ]
机构
[1] Univ Amsterdam, Amsterdam UMC, Dept Clin & Expt Cardiol, Heart Ctr, Meibergdreef 9, Amsterdam, Netherlands
[2] Stanford Univ, Dept Med, Stanford, CA USA
[3] Stanford Univ, Cardiovasc Inst, Stanford, CA USA
[4] Univ Amsterdam, Amsterdam Univ Med Ctr, Dept Biomed Engn & Phys, Meibergdreef 9, Amsterdam, Netherlands
[5] Univ Amsterdam, Fac Sci, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands
[6] Vrije Univ Amsterdam Med Ctr, Dept Cardiol, Amsterdam UMC, De Boelelaan 1118, NL-1118 Amsterdam, Netherlands
[7] Univ Amsterdam, Amsterdam UMC, Dept Radiol & Nucl Med, Meibergdreef 9, Amsterdam, Netherlands
[8] Swiss Fed Inst Technol Zurich ETHz, Dept Informat Technol & Elect Engn, Gloriastr 35, Zurich, Switzerland
[9] Univ Politecn Valencia, ITACA Inst, Camino Vera S-N, Valencia, Spain
[10] Amsterdam Cardiovasc Sci, Heart Failure & Arrhythmias, Amsterdam, Netherlands
[11] Univ Amsterdam, Heart Ctr, NL-1105 AZ Amsterdam, Netherlands
来源
EBIOMEDICINE | 2024年 / 99卷
基金
荷兰研究理事会;
关键词
Cardiology; Machine learning; Deep learning; Electrocardiography; Sudden cardiac death; SUDDEN CARDIAC DEATH; SURVIVAL; RISK; CHALLENGES; ALTERNANS;
D O I
10.1016/j.ebiom.2023.104937
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background Risk stratification for ventricular arrhythmias currently relies on static measurements that fail to adequately capture dynamic interactions between arrhythmic substrate and triggers over time. We trained and internally validated a dynamic machine learning (ML) model and neural network that extracted features from longitudinally collected electrocardiograms (ECG), and used these to predict the risk of malignant ventricular arrhythmias. Methods A multicentre study in patients implanted with an implantable cardioverter-defibrillator (ICD) between 2007 and 2021 in two academic hospitals was performed. Variational autoencoders (VAEs), which combine neural networks with variational inference principles, and can learn patterns and structure in data without explicit labelling, were trained to encode the mean ECG waveforms from the limb leads into 16 variables. Supervised dynamic ML models using these latent ECG representations and clinical baseline information were trained to predict malignant ventricular arrhythmias treated by the ICD. Model performance was evaluated on a hold-out set, using time-dependent receiver operating characteristic (ROC) and calibration curves. Findings 2942 patients (61.7 +/- 13.9 years, 25.5% female) were included, with a total of 32,129 ECG recordings during a mean follow-up of 43.9 +/- 35.9 months. The mean time-varying area under the ROC curve for the dynamic model was 0.738 +/- 0.07, compared to 0.639 +/- 0.03 for a static (i.e. baseline-only model). Feature analyses indicated dynamic changes in latent ECG representations, particularly those affecting the T-wave morphology, were of highest importance for model predictions. Interpretation Dynamic ML models and neural networks effectively leverage routinely collected longitudinal ECG recordings for personalised and updated predictions of malignant ventricular arrhythmias, outperforming static models. Funding This publication is part of the project DEEP RISK ICD (with project number 452019308) of the research programme Rubicon which is (partly) financed by the Dutch Research Council (NWO). This research is partly funded by the Amsterdam Cardiovascular Sciences (personal grant F.V.Y.T). Copyright (c) 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Obesity is Associated With Lower Mortality in Patients With Implantable Cardioverter-Defibrillator
    Mirza, Mahek
    Yeneneh, Beeletsega
    Strunets, Anton
    Cho, Chi
    Choudhuri, Indrajit
    Mortada, M. Eyman
    Nangia, Vikrarn
    Bhatia, Atul
    Niazi, Imran
    Sra, Jasbir
    Jahangir, Arshad
    CIRCULATION, 2013, 128 (22)
  • [32] Myocardial Scar Characterization and Future Ventricular Arrhythmia in Patients With Ischemic Cardiomyopathy and an Implantable Cardioverter-Defibrillator
    Noordman, Alwin B. P.
    Maass, Alexander H.
    Groenveld, Hessel
    Mulder, Bart A.
    Rienstra, Michiel
    Blaauw, Yuri
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2021, 8
  • [33] Ventricular Arrhythmias Among Implantable Cardioverter-Defibrillator Recipients for Primary Prevention Impact of Chronic Total Coronary Occlusion (VACTO Primary Study)
    Nombela-Franco, Luis
    Mitroi, Cristina D.
    Fernandez-Lozano, Ignacio
    Garcia-Touchard, Arturo
    Toquero, Jorge
    Castro-Urda, Victor
    Fernandez-Diaz, Jose A.
    Perez-Pereira, Elena
    Beltran-Correas, Paula
    Segovia, Javier
    Werner, Gerald S.
    Javier, Goicolea
    Luis, Alonso-Pulpon
    CIRCULATION-ARRHYTHMIA AND ELECTROPHYSIOLOGY, 2012, 5 (01) : 147 - 154
  • [34] Risk Models for Prediction of Implantable Cardioverter-Defibrillator Benefit Insights From the DANISH Trial
    Kristensen, Soren Lund
    Levy, Wayne C.
    Shadman, Ramin
    Nielsen, Jens C.
    Haarbo, Jens
    Videbaek, Lars
    Bruun, Niels E.
    Eiskjaer, Hans
    Wiggers, Henrik
    Brandes, Axel
    Thogersen, Anna Margrethe
    Hassager, Christian
    Svendsen, Jesper H.
    Hofsten, Dan E.
    Torp-Pedersen, Christian
    Pehrson, Steen
    Signorovitch, James
    Kober, Lars
    Thune, Jens Jakob
    JACC-HEART FAILURE, 2019, 7 (08) : 717 - 724
  • [35] Predictors of Appropriate Therapies and Death in Patients with Implantable Cardioverter-Defibrillator and Chronic Chagas Heart Disease
    Pereira, Francisca Tatiana Moreira
    Rocha, Eduardo Arrais
    Gondim, Davi Sales Pereira
    de Almeida, Rosa Livia Freitas
    Neto, Roberto da Justa Pires
    ARQUIVOS BRASILEIROS DE CARDIOLOGIA, 2024, 121 (06)
  • [36] FAILURE OF AN IMPLANTABLE CARDIOVERTER-DEFIBRILLATOR TO REDETECT VENTRICULAR-FIBRILLATION IN PATIENTS WITH A NONTHORACOTOMY LEAD SYSTEM
    JUNG, W
    MANZ, M
    MOOSDORF, R
    LUDERITZ, B
    CIRCULATION, 1992, 86 (04) : 1217 - 1222
  • [37] The Timing of Implantable Cardioverter-Defibrillator Implantation in Patients with Heart Failure
    Nawaf S. Al-Majed
    Justin A. Ezekowitz
    Current Cardiology Reports, 2012, 14 : 299 - 307
  • [38] Ventricular Arrhythmias and Implantable Cardioverter-Defibrillator Therapy in Patients With Continuous-Flow Left Ventricular Assist Devices Need for Primary Prevention?
    Garan, Arthur R.
    Yuzefpolskaya, Melana
    Colombo, Paolo C.
    Morrow, John P.
    Te-Frey, Rosie
    Dano, Drew
    Takayama, Hiroo
    Naka, Yoshifumi
    Garan, Hasan
    Jorde, Ulrich P.
    Uriel, Nir
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2013, 61 (25) : 2542 - 2550
  • [39] The need for a subsequent transvenous system in patients implanted with subcutaneous implantable cardioverter-defibrillator
    Gasperetti, Alessio
    Schiavone, Marco
    Vogler, Julia
    Laredo, Mikael
    Fastenrath, Fabian
    Palmisano, Pietro
    Ziacchi, Matteo
    Angeletti, Andrea
    Mitacchione, Gianfranco
    Kaiser, Lukas
    Compagnucci, Paolo
    Breitenstein, Alexander
    Arosio, Roberto
    Vitali, Francesco
    De Bonis, Silvana
    Picarelli, Francesco
    Casella, Michela
    Santini, Luca
    Pignalberi, Carlo
    Lavalle, Carlo
    Pisano, Ennio
    Ricciardi, Danilo
    Calo, Leonardo
    Curnis, Antonio
    Bertini, Matteo
    Gulletta, Simone
    Dello Russo, Antonio
    Badenco, Nicolas
    Tondo, Claudio
    Kuschyk, Juergen
    Tilz, Roland
    Forleo, Giovanni B.
    Biffi, Mauro
    HEART RHYTHM, 2022, 19 (12) : 1958 - 1964
  • [40] Incidence of Appropriate Shock in Implantable Cardioverter-Defibrillator Patients With Improved Ejection Fraction
    Naksuk, Niyada
    Saab, Ali
    Li, Jian-Ming
    Florea, Viorel
    Akkaya, Mehmet
    Anand, Inder S.
    Benditt, David G.
    Adabag, Selcuk
    JOURNAL OF CARDIAC FAILURE, 2013, 19 (06) : 426 - 430