Study of supramolecular organic frameworks for purification of hydrogen through molecular dynamics simulations

被引:7
作者
Zhang, Huiting [1 ]
Yang, Dengfeng [1 ]
Guan, Mengjiao [2 ]
Li, Qing [3 ]
Xu, Jianan [4 ]
Cai, Mengmeng [1 ]
Xu, Jia [2 ]
Liu, Qingzhi [1 ]
机构
[1] Qingdao Agr Univ, Coll Chem & Pharmaceut Sci, 700 Changcheng Rd, Qingdao 266109, Shandong, Peoples R China
[2] Ocean Univ China, Coll Chem & Chem Engn, 238 Songling Rd, Qingdao 266100, Shandong, Peoples R China
[3] Dezhou Univ, Coll Chem & Chem Engn, 566 West Univ Rd, Dezhou 253023, Shandong, Peoples R China
[4] Northwest Univ, Sch Chem Engn, 229 Taibai North Rd, Xian 710069, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
SOFs; Hydrogen purification; Molecular dynamics simulation; Membrane separation; GRAPHENE OXIDE MEMBRANES; CO2; ADSORPTION; SEPARATION; COVALENT; PERMEATION; ALGORITHMS; ENERGY; SOFS; H-2; 2D;
D O I
10.1016/j.seppur.2023.126106
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The efficiency of proton exchange membrane fuel cells (PEMFCs) is heavily dependent on hydrogen purity. The production of hydrogen using methanol releases gases such as CO2 and CO, and hydrogen purification is particularly important. In this study, the performance of hydrogen purification (H2/CO2, H2/CO, and H2/CO2/ CO) of three supramolecular organic frameworks (SOF-8, SOF-9a, and SOF-10a) with similar structures and different pore sizes and dimensions (two-dimensional (2D) and three-dimensional (3D)) were comprehensively investigated by molecular dynamics simulations and Grand Canonical Monte Carlo simulations. The monolayer, AA and AB stacked SOFs membranes were investigated. The results show that monolayer membranes exhibited high H2 permeability but low CO2 interception. AA-stacked SOF-10a and AB-stacked SOF-8 and SOF-10a can achieve 100 % separation of H2 from both CO2 and CO, with a minimum H2 permeability of 0.3 x 106 GPU and a maximum of up to 0.66 x 106 GPU in the H2/CO2 separation system, which is nearly 5 orders of magnitude higher than the industry standard. Microscopic analyses indicate that 3D SOFs (SOF-9a and SOF-10a) exhibit stronger interactions with CO2, while still maintain high H2 permeability in different stacking modes.
引用
收藏
页数:12
相关论文
共 82 条
[51]   The enhancement of hydrogen recovery in PSA unit of domestic petrochemical plant [J].
Rahimpour, M. R. ;
Ghaemi, M. ;
Jokar, S. M. ;
Dehghani, O. ;
Jafari, M. ;
Amiri, S. ;
Raeissi, S. .
CHEMICAL ENGINEERING JOURNAL, 2013, 226 :444-459
[52]   Efficient CH4/CO2 Gas Mixture Separation through Nanoporous Graphene Membrane Designs [J].
Razmara, Naiyer ;
Kirch, Alexsandro ;
Meneghini, Julio Romano ;
Miranda, Caetano Rodrigues .
ENERGIES, 2021, 14 (09)
[53]  
Rivero R., 2022, IOP Conference Series: Materials Science and Engineering, DOI 10.1088/1757-899X/1257/1/012006
[55]   A review of the application of carbon-based membranes to hydrogen separation [J].
Sazali, Norazlianie .
JOURNAL OF MATERIALS SCIENCE, 2020, 55 (25) :11052-11070
[56]   Plasma-assisted synthesis of ZIF-8 membrane for hydrogen separation [J].
Shan, Yongjiang ;
He, Mingliang ;
Zhang, Fei ;
Wang, Yifei ;
Liu, Yuxin ;
Yang, Yingdong ;
Wang, Xingqian ;
Zhang, Xinkang ;
Li, Yuqin ;
Wang, Zhipeng ;
Chen, Xiangshu .
SEPARATION AND PURIFICATION TECHNOLOGY, 2023, 317
[57]   CO2 adsorption and separation in covalent organic frameworks with interlayer slipping [J].
Sharma, Abhishek ;
Malani, Ateeque ;
Medhekar, Nikhil V. ;
Babarao, Ravichandar .
CRYSTENGCOMM, 2017, 19 (46) :6950-6963
[58]   Hydrogen generation from methanol at near-room temperature [J].
Shen, Yangbin ;
Zhan, Yulu ;
Li, Shuping ;
Ning, Fandi ;
Du, Ying ;
Huang, Yunjie ;
He, Ting ;
Zhou, Xiaochun .
CHEMICAL SCIENCE, 2017, 8 (11) :7498-7504
[59]   Grand-Canonical Monte Carlo and Molecular-Dynamics Simulations of Carbon-Dioxide and Carbon-Monoxide Adsorption in Zeolitic Imidazolate Framework Materials [J].
Sirjoosingh, Andrew ;
Alavi, Saman ;
Woo, Tom K. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (05) :2171-2178
[60]   Highly CO2 selective pillar[n]arene-based supramolecular organic frameworks [J].
Tan, Li-Li ;
Zhu, Youlong ;
Jin, Yinghua ;
Zhang, Wei ;
Yang, Ying-Wei .
SUPRAMOLECULAR CHEMISTRY, 2018, 30 (07) :648-654