The B3 gene family in Medicago truncatula: Genome-wide identification and the response to salt stress

被引:3
|
作者
Gao, Jing [1 ,2 ,4 ]
Ma, Guangjing [1 ,2 ,4 ]
Chen, Junjie [1 ,4 ]
Gichovi, Bancy [1 ,2 ,4 ]
Cao, Liwen [1 ,3 ,4 ]
Liu, Zhihao [5 ]
Chen, Liang [1 ,3 ,4 ]
机构
[1] Chinese Acad Sci, Innovat Acad Seed Design, CAS Key Lab Plant Germplasm Enhancement & Specialt, Wuhan Bot Garden, Wuhan 430074, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Natl Ctr Technol Innovat Comprehens Utilizat Salin, Academician Workstn Agr High Tech Ind Area Yellow, Dongying 257300, Peoples R China
[4] Chinese Acad Sci, State Key Lab Plant Divers & Specialty Crops, Wuhan Bot Garden, Wuhan 430074, Peoples R China
[5] Hubei Normal Univ, Key Lab Edible Wild Plants Conservat & Utilizat, Huangshi 435002, Peoples R China
基金
中国国家自然科学基金;
关键词
B3 gene family; Genome-wide analysis; Medicago truncatula; Salt stress; TRANSCRIPTION FACTORS; EXPRESSION; ARABIDOPSIS; TOLERANCE; SEQUENCE; PROTEIN; NA+; ROS;
D O I
10.1016/j.plaphy.2023.108260
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The B3 family genes constitute a pivotal group of transcription factors that assume diverse roles in the growth, development, and response to both biotic and abiotic stresses in plants. Medicago truncatula is a diploid plant with a relatively small genome, adopted as a model species for legumes genetics and functional genomic research. In this study, 173 B3 genes were identified in the M. truncatula genome, and classified into seven subgroups by phylogenetic analysis. Collinearity analysis revealed that 18 MtB3 gene pairs arose from segmented replication events. Analysis of expression patterns disclosed that 61 MtB3s exhibited a spectrum of expression profiles across various tissues and in the response to salt stress, indicating their potential involvement in salt stress signaling response. Among these genes, MtB3-53 exhibited tissue-specific differential expression and demonstrated a rapid response to salt stress induction. Overexpression of MtB3-53 gene in Arabidopsis improves salt stress tolerance by increasing plant biomass and chlorophyll content, while reducing leaf cell membrane damage. Moreover, salt treatment resulted in more up-regulation of AtABF1, AtABI3, AtHKT1, AtKIN1, AtNHX1, and AtRD29A in MtB353 transgenic Arabidopsis plants compared to the wild type, providing evidences that MtB3-53 enhances plant salt tolerance not only by modulating ion homeostasis but also by stimulating the production of antioxidants, which leads to the alleviation of cellular damage caused by salt stress. In conclusion, this study provides a fundamental basis for future investigations into the B3 gene family and its capacity to regulate plant responses to environmental stressors.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Genome-Wide Identification and Characterization of the GASA Gene Family in Medicago truncatula, and Expression Patterns under Abiotic Stress and Hormone Treatments
    Gao, Cai
    Li, Zhongxing
    Zhang, Hanwen
    Li, Chun
    Sun, Haoyang
    Li, Shuo
    Ma, Nan
    Qi, Xiangyu
    Cui, Yilin
    Yang, Peizhi
    Hu, Tianming
    PLANTS-BASEL, 2024, 13 (17):
  • [42] Genome-Wide Identification of MsICE Gene Family in Medicago sativa and Expression Analysis of the Response to Abiotic Stress
    Wang, Baiji
    Liu, Qianning
    Xu, Wen
    Yuan, Yuying
    Tuluhong, Muzhapaer
    Yu, Jinqiu
    Cui, Guowen
    AGRONOMY-BASEL, 2024, 14 (09):
  • [43] Genome-wide identification of bHLH gene family and its response to cadmium stress in Populus x canescens
    Yao, Yuneng
    He, Zhengquan
    Li, Xinmeng
    Xu, Jing
    Han, Xiaojiao
    Liang, Hongwei
    Zhuo, Renying
    Qiu, Wenmin
    PEERJ, 2024, 12
  • [44] Genome-wide identification, expression profiling, and SSR marker development of the bZIP transcription factor family in Medicago truncatula
    Zhang, Zhengshe
    Liu, Wenxian
    Qi, Xiao
    Liu, Zhipeng
    Xie, Wengang
    Wang, Yanrong
    BIOCHEMICAL SYSTEMATICS AND ECOLOGY, 2015, 61 : 218 - 228
  • [45] Genome-wide identification, phylogeny and expression analysis of the SPL gene family and its important role in salt stress in Medicago sativa L.
    He, Fei
    Long, Ruicai
    Wei, Chunxue
    Zhang, Yunxiu
    Li, Mingna
    Kang, Junmei
    Yang, Qingchuan
    Wang, Zhen
    Chen, Lin
    BMC PLANT BIOLOGY, 2022, 22 (01)
  • [46] Genome-wide characterization of the ankyrin repeats gene family under salt stress in soybean
    Zhang, Dayong
    Wan, Qun
    He, Xiaolan
    Ning, Lihua
    Huang, Yihong
    Xu, Zhaolong
    Liu, Jia
    Shao, Hongbo
    SCIENCE OF THE TOTAL ENVIRONMENT, 2016, 568 : 899 - 909
  • [47] Genome-wide analysis and functional validation of the cotton FAH gene family for salt stress
    Gu, Haijing
    Feng, Wenxiang
    Mehari, Teame Gereziher
    Wang, Yifan
    Wang, Ziyin
    Xu, Yifan
    Zhao, Yizhou
    Tang, Junfeng
    Zhang, Ke
    Zhou, Zitong
    Wang, Wei
    Zhou, Ruqin
    Wu, Jianyong
    Wang, Baohua
    BMC GENOMICS, 2025, 26 (01):
  • [48] Genome-Wide Identification of the SRS Gene Family in Poplar and Expression Analysis Under Drought Stress and Salt Stress
    Yin, Zhihui
    Li, Haixia
    Li, Jing
    Guo, Chengbo
    Li, Zhenghua
    Zhang, Haifeng
    Wang, Hongmei
    Siqin, Tuya
    Sun, Peilin
    Wang, Yanmin
    Bai, Hui
    FORESTS, 2025, 16 (02):
  • [49] Genome-wide identification of CBL gene family in Salvia miltiorrhiza and the characterization of SmCBL3 under salt stress
    Lv, Bingbing
    Wang, Tong
    Wang, Mei
    Gan, Hui
    Feng, Qiaoqiao
    Ma, Pengda
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2024, 207
  • [50] Genome-Wide Identification of Glyoxalase Genes in Medicago truncatula and Their Expression Profiling in Response to Various Developmental and Environmental Stimuli
    Ghosh, Ajit
    FRONTIERS IN PLANT SCIENCE, 2017, 8