Pointwise second order convergence of structure-preserving scheme for the triple-coupled nonlinear Schrödinger equations

被引:5
作者
Kong, Linghua [1 ,2 ]
Wu, Yexiang [1 ,2 ]
Liu, Zhiqiang [1 ,2 ]
Wang, Ping [1 ,2 ]
机构
[1] Jiangxi Normal Univ, Sch Math & Stat, Nanchang 330022, Jiangxi, Peoples R China
[2] Jiangxi Prov Ctr Appl Math, Nanchang 330022, Jiangxi, Peoples R China
关键词
Triple-coupled nonlinear Schrodinger; equations; Crank-Nicolson scheme; Structure-preserving scheme; Conservation law; Convergence; SCHRODINGER-EQUATION; DIFFERENCE SCHEME; INTEGRATOR;
D O I
10.1016/j.camwa.2023.11.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present a finite difference scheme for the triple-coupled Schrodinger equations (T-CNLS) in optics. The T-CNLS is approximated by Crank-Nicolson scheme in time and finite difference method in space. Some mathematical characters are investigated, such as structure-preserving properties, unique solvability, convergence in ������infinity norm. Some numerical examples are reported to illustrate the theoretical results.
引用
收藏
页码:91 / 102
页数:12
相关论文
共 24 条
[1]   SOLITON PROPAGATION IN 3 COUPLED NONLINEAR SCHRODINGER-EQUATIONS [J].
ABRAROV, RM ;
CHRISTIANSEN, PL ;
DARMANYAN, SA ;
SCOTT, AC ;
SOERENSEN, MP .
PHYSICS LETTERS A, 1992, 171 (5-6) :298-302
[2]   NUMERICAL STUDY OF QUANTIZED VORTEX INTERACTIONS IN THE NONLINEAR SCHRODINGER EQUATION ON BOUNDED DOMAINS [J].
Bao, Weizhu ;
Tang, Qinglin .
MULTISCALE MODELING & SIMULATION, 2014, 12 (02) :411-439
[3]   UNIFORM AND OPTIMAL ERROR ESTIMATES OF AN EXPONENTIAL WAVE INTEGRATOR SINE PSEUDOSPECTRAL METHOD FOR THE NONLINEAR SCHRODINGER EQUATION WITH WAVE OPERATOR [J].
Bao, Weizhu ;
Cai, Yongyong .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (03) :1103-1127
[4]   The Three-Component Defocusing Nonlinear Schrodinger Equation with Nonzero Boundary Conditions [J].
Biondini, Gino ;
Kraus, Daniel K. ;
Prinari, Barbara .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 348 (02) :475-533
[5]  
BROWDER FE, 1965, P S APPL MATH, V17, P24
[6]   Two classes of linearly implicit local energy-preserving approach for general multi-symplectic Hamiltonian PDEs [J].
Cai, Jiaxiang ;
Shen, Jie .
JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 401
[7]  
Chen H., 2022, J. Jiangxi Normal. Univ., V46, P203
[8]   Numerical Solution of Nonlinear Schrodinger Equation by Using Time-Space Pseudo-Spectral Method [J].
Dehghan, Mehdi ;
Taleei, Ameneh .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2010, 26 (04) :979-992
[9]   Existence and Uniqueness of Positive Solutions to Three Coupled Nonlinear Schrodinger Equations [J].
Fang, Guo-bei ;
Lu, Zhong-xue .
ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2015, 31 (04) :1021-1032
[10]  
Feng K, 2010, SYMPLECTIC GEOMETRIC ALGORITHMS FOR HAMILTONIAN SYSTEMS, P1, DOI 10.1007/978-3-642-01777-3