A tight upper bound on the number of non-zero weights of a constacyclic code

被引:1
作者
Zhang, Hanglong [1 ]
Cao, Xiwang [1 ,2 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Dept Math, Nanjing 210016, Peoples R China
[2] MIIT, Key Lab Math Modelling & High Performance Comp Air, Nanjing 211106, Peoples R China
基金
中国国家自然科学基金;
关键词
Cyclic code; Constacyclic code; Hamming weight; Group action;
D O I
10.1016/j.ffa.2023.102312
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a simple-root lambda-constacyclic code Cover F-q, let <rho > and <rho,M > be the subgroups of the automorphism group of C generated by the cyclic shift rho, and by the cyclic shift rho and the scalar multiplication group rho, respectively. Let N-G(C*) be the number of orbits of a subgroup Gof the automorphism group of C acting on C* = C\{0}. In this paper, we establish explicit formulas for N-<rho > (C*) and N-<rho,N-M > (C*). Consequently, we derive a upper bound on the number of non-zero weights of C. We present some irreducible and reducible lambda-constacyclic codes, which show that the upper bound is tight. A sufficient condition to guarantee N-<rho > (C*) = N-<rho,N-M > (C*) is presented. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:18
相关论文
共 12 条
  • [1] MAXIMUM WEIGHT SPECTRUM CODES
    Alderson, Tim
    Neri, Alessandro
    [J]. ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2019, 13 (01) : 101 - 119
  • [2] A NOTE ON FULL WEIGHT SPECTRUM CODES
    Alderson, Tim L.
    [J]. TRANSACTIONS ON COMBINATORICS, 2019, 8 (03) : 15 - 22
  • [3] Assmus E. F. Jr., 1969, Journal of Combinatorial Theory, Series A, V6, P122, DOI 10.1016/S0021-9800(69)80115-8
  • [4] The Magma algebra system .1. The user language
    Bosma, W
    Cannon, J
    Playoust, C
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) : 235 - 265
  • [5] Cao YL, 2015, APPL ALGEBR ENG COMM, V26, P369, DOI 10.1007/s00200-015-0257-4
  • [6] Chen BC, 2023, Arxiv, DOI arXiv:2305.14687
  • [7] A Tight Upper Bound on the Number of Non-Zero Weights of a Cyclic Code
    Chen, Bocong
    Zhang, Guanghui
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2023, 69 (02) : 995 - 1004
  • [8] 4 FUNDAMENTAL PARAMETERS OF A CODE AND THEIR COMBINATORIAL SIGNIFICANCE
    DELSARTE, P
    [J]. INFORMATION AND CONTROL, 1973, 23 (05): : 407 - 438
  • [9] Rotman Joseph J., 2003, Advanced Modern Algebra
  • [10] How Many Weights Can a Quasi-Cyclic Code Have?
    Shi, Minjia
    Neri, Alessandro
    Sole, Patrick
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (11) : 6855 - 6862