Surface protection is crucial in industrial equipment and tools to prevent wear and friction in harsh environments, particularly at high temperatures, where anti-friction coatings are essential for optimal performance. The present research investigates the tribological properties of high-velocity oxy-fuel sprayed coatings of 17-4PH stainless steel reinforced with tungsten carbide and chromium carbide powders. The coatings are deposited onto a maraging steel substrate. A dry sliding wear test was performed using an alumina ball as a counter body under various test temperatures (25 degrees C, 300 degrees C, and 600 degrees C) and loads (10 N and 30 N). The coating is characterized by employing SEM, XRD, micro-hardness tester, particle analyzer, and bond strength tester, and the mechanism of wear reduction was discussed. The post-wear analysis was carried out on the wear track using SEM/EDS and 3D non-contact optical profilometers. The micro-hardness and bond strength of both (17-4PH-30%WC-Co and 17-4PH-30%Cr3C2) coatings are compared. The test results revealed that at all temperatures and loads, 17-4PH-30%WC-Co coating shows better wear resistance and lower friction coefficient than the 17-4PH-30%Cr3C2 coating(.) The significant influence of the tribo-oxide layer at high temperatures, which contributed to decreasing wear rate and coefficient of friction, was premeditated.