Efficiency and energy balance for substitution of CH4 in clathrate hydrates with CO2 under multiple-phase coexisting conditions

被引:6
|
作者
Tanaka, Hideki [1 ,2 ]
Matsumoto, Masakazu [2 ]
Yagasaki, Takuma [3 ]
机构
[1] Toyota Phys & Chem Res Inst, Nagakute 4801192, Japan
[2] Okayama Univ, Res Inst Interdisciplinary Sci, Okayama 7008530, Japan
[3] Osaka Univ, Grad Sch Engn Sci, Div Chem Engn, Osaka 5608531, Japan
关键词
THERMODYNAMIC STABILITY; METHANE HYDRATE; CARBON-DIOXIDE; REPLACEMENT; EQUILIBRIUM; SIMULATION; OCCUPANCY; HYDROGEN; ICE;
D O I
10.1063/5.0179655
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Many experimental and theoretical studies on CH4-CO2 hydrates have been performed aiming at the extraction of CH4 as a relatively clean energy resource and concurrent sequestration of CO2. However, vague or insufficient characterization of the environmental conditions prevents us from a comprehensive understanding of even equilibrium properties of CH4-CO2 hydrates for this substitution. We propose possible reaction schemes for the substitution, paying special attention to the coexisting phases, the aqueous and/or the fluid, where CO2 is supplied from and CH4 is transferred to. We address the two schemes for the substitution operating in three-phase and two-phase coexistence. Advantages and efficiencies of extracting CH4 in the individual scheme are estimated from the chemical potentials of all the components in all the phases involved in the substitution on the basis of a statistical mechanical theory developed recently. It is found that although substitution is feasible in the three-phase coexistence, its working window in temperature-pressure space is much narrower compared to the two-phase coexistence condition. Despite that the substitution normally generates only a small amount of heat, a large endothermic substitution is suggested in the medium pressure range, caused by the vaporization of liquid CO2 due to mixing with a small amount of the released CH4. This study provides the first theoretical framework toward the practical use of hydrates replacing CH4 with CO2 and serves as a basis for quantitative planning.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Effect of Gas Exchange Interval on CH4 Recovery Efficiency and Study of Mechanism of CH4 Hydrate Replacement by CO2 Mixture
    Ding, Ya-Long
    Wang, Hua-Qin
    Lv, Tao
    FRONTIERS IN ENERGY RESEARCH, 2021, 9
  • [32] Phase balance and selectivity of CH4/CO2 adsorption on MIL-101
    Xia, Qi-Bin
    Miao, Jin-Peng
    Sun, Xue-Jiao
    Zhou, Xin
    Li, Zhong
    Xi, Hong-Xia
    Huanan Ligong Daxue Xuebao/Journal of South China University of Technology (Natural Science), 2013, 41 (12): : 24 - 28+42
  • [33] CO2/N2 injection into CH4 + C3H8 hydrates for gas recovery and CO2 sequestration
    Sun, Youhong
    Zhang, Guobiao
    Li, Shengli
    Jiang, Shuhui
    CHEMICAL ENGINEERING JOURNAL, 2019, 375
  • [34] Effect of the Oscillating Electric Field on the Enhancement of CH4 Replacement in Hydrates by CO2: A Molecular Dynamics Study
    Wang, Yudou
    Xu, Yan
    Zhang, Bo
    Liao, Bo
    Yuan, Shundong
    Wang, Diansheng
    ENERGY & FUELS, 2022, 36 (21) : 13014 - 13027
  • [35] Membranes for separation of CO2/CH4 at harsh conditions
    Teixeira Cardoso, Anne Raquel
    Ambrosi, Alan
    Di Luccio, Marco
    Hotza, Dachamir
    JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2022, 98
  • [36] Assessment of clathrate hydrate phase equilibrium data for CO2 + CH4/N2 + water system
    Eslamimanesh, Ali
    Babaee, Saeedeh
    Gharagheizi, Farhad
    Javanmardi, Jafar
    Mohammadi, Amir H.
    Richon, Dominique
    FLUID PHASE EQUILIBRIA, 2013, 349 : 71 - 82
  • [37] Experimental Study of Mixed Gas Hydrates from Gas Feed Containing CH4, CO2 and N2: Phase Equilibrium in the Presence of Excess Water and Gas Exchange
    Legoix, Ludovic Nicolas
    Ruffine, Livio
    Deusner, Christian
    Haeckel, Matthias
    ENERGIES, 2018, 11 (08):
  • [38] Influence of N2 on Formation Conditions and Guest Distribution of Mixed CO2 + CH4 Gas Hydrates
    Belosludov, Vladimir R.
    Bozhko, Yulia Yu.
    Subbotin, Oleg S.
    Belosludov, Rodion V.
    Zhdanov, Ravil K.
    Gets, Kirill V.
    Kawazoe, Yoshiyuki
    MOLECULES, 2018, 23 (12):
  • [39] Phase equilibria of clathrate hydrates in CO2/CH4 + (1-propanol/2-propanol) plus water systems: Experimental measurements and thermodynamic modeling
    Seif, Maryam
    Kamran-Pirzaman, Arash
    Mohammadi, Amir H.
    JOURNAL OF CHEMICAL THERMODYNAMICS, 2018, 118 : 58 - 66
  • [40] Enhanced CH4 Recovery Induced via Structural Transformation in the CH4/CO2 Replacement That Occurs in sH Hydrates
    Lee, Yohan
    Kim, Yunju
    Seo, Yongwon
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2015, 49 (14) : 8899 - 8906