TASK-AGNOSTIC OPEN-SET PROTOTYPE FOR FEW-SHOT OPEN-SET RECOGNITION

被引:3
作者
Kim, Byeonggeun [2 ]
Lee, Jun-Tae [1 ]
Shim, Kyuhong [1 ]
Chang, Simyung [1 ]
机构
[1] Qualcomm AI Res, Seoul, South Korea
[2] Qualcomm Korea YH, Seoul, South Korea
来源
2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP | 2023年
关键词
Few-shot learning; open-set recognition; task agnostic open-set prototype; NETWORKS;
D O I
10.1109/ICIP49359.2023.10222412
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In few-shot open-set recognition (FSOSR), a network learns to recognize closed-set samples with a few support samples while rejecting open-set samples with no class cue. Unlike conventional OSR, the FSOSR considers more practical open worlds where a closed-set class can be selected as an open-set class in another testing (task) and vice versa. Existing FSOSR methods have commonly represented the open set with task-dependent extra modules. These modules decently handle the varied closed and open classes but accompany inevitable complexity increase. This paper shows that a single open-set prototype can represent open-set samples when it satisfies a specific relation in metric space: closest to open-set, and simultaneously second nearest to close-set. We propose a task-agnostic open-set prototype with distance scaling factors and design loss terms. We extensively analyze the proposed components to demonstrate their importance. Our method achieves state-of-the-art results on miniImageNet and tieredImageNet, respectively, without task-dependent extra modules.
引用
收藏
页码:31 / 35
页数:5
相关论文
共 26 条
[11]   Few-Shot Open-Set Recognition using Meta-Learning [J].
Liu, Bo ;
Kang, Hao ;
Li, Haoxiang ;
Hua, Gang ;
Vasconcelos, Nuno .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, :8795-8804
[12]   Nearest neighbors distance ratio open-set classifier [J].
Mendes Junior, Pedro R. ;
de Souza, Roberto M. ;
Werneck, Rafael de O. ;
Stein, Bernardo V. ;
Pazinato, Daniel V. ;
de Almeida, Waldir R. ;
Penatti, Otavio A. B. ;
Torres, Ricardo da S. ;
Rocha, Anderson .
MACHINE LEARNING, 2017, 106 (03) :359-386
[13]   Image Segmentation Using Deep Learning: A Survey [J].
Minaee, Shervin ;
Boykov, Yuri Y. ;
Porikli, Fatih ;
Plaza, Antonio J. ;
Kehtarnavaz, Nasser ;
Terzopoulos, Demetri .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (07) :3523-3542
[14]  
Nesterov Yu. E., 1983, Doklady Akademii Nauk SSSR, V269, P543
[15]  
Oreshkin BN, 2018, ADV NEUR IN, V31
[16]  
Rawat W, 2017, NEURAL COMPUT, V29, P2352, DOI [10.1162/neco_a_00990, 10.1162/NECO_a_00990]
[17]  
Ren M., 2018, ICLR, P1, DOI DOI 10.1109/IPFA.2018.8452547
[18]   Toward Open Set Recognition [J].
Scheirer, Walter J. ;
Rocha, Anderson de Rezende ;
Sapkota, Archana ;
Boult, Terrance E. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (07) :1757-1772
[19]  
Snell J, 2017, ADV NEUR IN, V30
[20]   Rethinking Few-Shot Image Classification: A Good Embedding is All You Need? [J].
Tian, Yonglong ;
Wang, Yue ;
Krishnan, Dilip ;
Tenenbaum, Joshua B. ;
Isola, Phillip .
COMPUTER VISION - ECCV 2020, PT XIV, 2020, 12359 :266-282