Novel extraction method for contact resistance and effective mobility in carbon nanotube field-effect transistors using S-parameter measurements

被引:0
作者
Zhang, Yuming [1 ]
Yang, Yang [2 ]
Yang, Tao [1 ]
Zhang, Yong [1 ]
机构
[1] Univ Elect Sci & Technol China, Chengdu 611731, Peoples R China
[2] Nanjing Elect Devices Inst, Nanjing 210016, Peoples R China
关键词
Carbon nanotube; CNTFET; Contact resistance; Channel capacitance; Mobility; S; -parameter; PERFORMANCE;
D O I
10.1016/j.rinp.2023.106999
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, a novel method is presented for the accurate extraction of key parameters of carbon nanotube fieldeffect transistors (CNTFETs) using S-parameter measurements. An equivalent circuit model, which utilizes lumped components based on the physical characteristics of the device, is employed to model the AC behavior (Sparameters) of the CNTFETs. The proposed method extracts the bias-dependent contact resistance, channel resistance, and gate-channel capacitance from the model at each gate voltage, thereby facilitating the extraction of the effective mobility of the CNT channel. At the last part of this paper, this method is used to quantitatively investigate the impact of electrostatic doping on CNTFETs. This new methodology offers an effective approach for characterizing CNTFETs, which is an important indicator for device optimization. Additionally, the proposed method can be easily applied to other types of FETs.
引用
收藏
页数:8
相关论文
共 31 条
[1]  
Balestra F., 2013, Nanoscale CMOS: innovative materials, modeling and characterization
[2]   Gate capacitance coupling of singled-walled carbon nanotube thin-film transistors [J].
Cao, Qing ;
Xia, Minggang ;
Kocabas, Coskun ;
Shim, Moonsub ;
Rogers, John A. ;
Rotkin, Slava V. .
APPLIED PHYSICS LETTERS, 2007, 90 (02)
[3]   The role of metal-nanotube contact in the performance of carbon nanotube field-effect transistors [J].
Chen, ZH ;
Appenzeller, J ;
Knoch, J ;
Lin, YM ;
Avouris, P .
NANO LETTERS, 2005, 5 (07) :1497-1502
[4]   COOS: a wave-function based Schrodinger-Poisson solver for ballistic nanotube transistors [J].
Claus, Martin ;
Mothes, Sven ;
Blawid, Stefan ;
Schroeter, Michael .
JOURNAL OF COMPUTATIONAL ELECTRONICS, 2014, 13 (03) :689-700
[5]   A NEW METHOD FOR DETERMINING THE FET SMALL-SIGNAL EQUIVALENT-CIRCUIT [J].
DAMBRINE, G ;
CAPPY, A ;
HELIODORE, F ;
PLAYEZ, E .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1988, 36 (07) :1151-1159
[6]   Carbon Nanotube Network Ambipolar Field-Effect Transistors with 108 On/Off Ratio [J].
Derenskyi, Vladimir ;
Gomulya, Widianta ;
Rios, Jorge Mario Salazar ;
Fritsch, Martin ;
Froehlich, Nils ;
Jung, Stefan ;
Allard, Sybille ;
Bisri, Satria Zulkarnaen ;
Gordiichuk, Pavlo ;
Herrmann, Andreas ;
Scherf, Ullrich ;
Loi, Maria Antonietta .
ADVANCED MATERIALS, 2014, 26 (34) :5969-+
[7]   Reduction of hysteresis for carbon nanotube mobility measurements using pulsed characterization [J].
Estrada, David ;
Dutta, Sumit ;
Liao, Albert ;
Pop, Eric .
NANOTECHNOLOGY, 2010, 21 (08)
[8]   High performance polarization-independent Quantum Dot Semiconductor Optical Amplifier with 22 dB fiber to fiber gain using Mode Propagation Tuning without additional polarization controller [J].
Farmani, Ali ;
Farhang, Mahmoud ;
Sheikhi, Mohammad H. .
OPTICS AND LASER TECHNOLOGY, 2017, 93 :127-132
[9]  
Ghodrati M., 2020, NANOSENSORS SMART CI, P171, DOI DOI 10.1016/B978-0-12-819870-4.00036-0
[10]   Modern microprocessor built from complementary carbon nanotube transistors [J].
Hills, Gage ;
Lau, Christian ;
Wright, Andrew ;
Fuller, Samuel ;
Bishop, Mindy D. ;
Srimani, Tathagata ;
Kanhaiya, Pritpal ;
Ho, Rebecca ;
Amer, Aya ;
Stein, Yosi ;
Murphy, Denis ;
Arvind ;
Chandrakasan, Anantha ;
Shulaker, Max M. .
NATURE, 2019, 572 (7771) :595-+