Profiling the polyadenylated transcriptome of extracellular vesicles with long-read nanopore sequencing

被引:6
|
作者
Padilla, Juan-Carlos A. [1 ,2 ]
Barutcu, Seda [1 ]
Malet, Ludovic [1 ]
Deschamps-Francoeur, Gabrielle [1 ]
Calderon, Virginie [1 ]
Kwon, Eunjeong [1 ]
Lecuyer, Eric [1 ,2 ,3 ]
机构
[1] Inst Rech Clin Montreal IRCM, 110 Ave Pins Ouest, Montreal, PQ H2W 1R7, Canada
[2] McGill Univ, Div Expt Med, Montreal, PQ H4A 3J1, Canada
[3] Univ Montreal, Dept Biochim & Medecine Mol, Montreal, PQ H3T 1J4, Canada
基金
加拿大健康研究院; 加拿大自然科学与工程研究理事会;
关键词
Extracellular vesicles; Long-Read RNA Sequencing; Nanopore sequencing; Polyadenylated transcriptome; Poly-A; mRNA; lncRNA; Transcriptomics; Transcript Isoforms; RNA-seq; COLORECTAL-CANCER; MEDIATED TRANSFER; NONCODING RNA; MESSENGER-RNA; RIBOSOMAL-RNA; WEB SERVER; CELL-CYCLE; PROMOTE; ACTIVATION; UNCOVERS;
D O I
10.1186/s12864-023-09552-6
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
BackgroundWhile numerous studies have described the transcriptomes of extracellular vesicles (EVs) in different cellular contexts, these efforts have typically relied on sequencing methods requiring RNA fragmentation, which limits interpretations on the integrity and isoform diversity of EV-targeted RNA populations. It has been assumed that mRNA signatures in EVs are likely to be fragmentation products of the cellular mRNA material, and the extent to which full-length mRNAs are present within EVs remains to be clarified.ResultsUsing long-read nanopore RNA sequencing, we sought to characterize the full-length polyadenylated (poly-A) transcriptome of EVs released by human chronic myelogenous leukemia K562 cells. We detected 443 and 280 RNAs that were respectively enriched or depleted in EVs. EV-enriched poly-A transcripts consist of a variety of biotypes, including mRNAs, long non-coding RNAs, and pseudogenes. Our analysis revealed that 10.58% of all EV reads, and 18.67% of all cellular (WC) reads, corresponded to known full-length transcripts, with mRNAs representing the largest biotype for each group (EV = 58.13%, WC = 43.93%). We also observed that for many well-represented coding and non-coding genes, diverse full-length transcript isoforms were present in EV specimens, and these isoforms were reflective-of but often in different ratio compared to cellular samples.ConclusionThis work provides novel insights into the compositional diversity of poly-A transcript isoforms enriched within EVs, while also underscoring the potential usefulness of nanopore sequencing to interrogate secreted RNA transcriptomes.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Whole Genome Assembly of Human Papillomavirus by Nanopore Long-Read Sequencing
    Yang, Shuaibing
    Zhao, Qianqian
    Tang, Lihua
    Chen, Zejia
    Wu, Zhaoting
    Li, Kaixin
    Lin, Ruoru
    Chen, Yang
    Ou, Danlin
    Zhou, Li
    Xu, Jianzhen
    Qin, Qingsong
    FRONTIERS IN GENETICS, 2022, 12
  • [22] Single-cell transcriptomics in the context of long-read nanopore sequencing
    Hayrabedyan, Soren
    Kostova, Petya
    Zlatkov, Viktor
    Todorova, Krassimira
    BIOTECHNOLOGY & BIOTECHNOLOGICAL EQUIPMENT, 2021, 35 (01) : 1439 - 1451
  • [23] Application of Long-Read Nanopore Sequencing to the Search for Mutations in Hypertrophic Cardiomyopathy
    Salakhov, Ramil R.
    Golubenko, Maria, V
    Valiakhmetov, Nail R.
    Pavlyukova, Elena N.
    Zarubin, Aleksei A.
    Babushkina, Nadezhda P.
    Kucher, Aksana N.
    Sleptcov, Aleksei A.
    Nazarenko, Maria S.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (24)
  • [24] The Impact of cDNA Normalization on Long-Read Sequencing of a Complex Transcriptome
    Hoang, Nam, V
    Furtado, Agnelo
    Perlo, Virginie
    Botha, Frederik C.
    Henry, Robert J.
    FRONTIERS IN GENETICS, 2019, 10
  • [25] JAFFAL: detecting fusion genes with long-read transcriptome sequencing
    Davidson, Nadia M.
    Chen, Ying
    Sadras, Teresa
    Ryland, Georgina L.
    Blombery, Piers
    Ekert, Paul G.
    Goke, Jonathan
    Oshlack, Alicia
    GENOME BIOLOGY, 2022, 23 (01)
  • [26] JAFFAL: detecting fusion genes with long-read transcriptome sequencing
    Nadia M. Davidson
    Ying Chen
    Teresa Sadras
    Georgina L. Ryland
    Piers Blombery
    Paul G. Ekert
    Jonathan Göke
    Alicia Oshlack
    Genome Biology, 23
  • [27] Transcriptome variation in human tissues revealed by long-read sequencing
    Glinos, Dafni A.
    Garborcauskas, Garrett
    Hoffman, Paul
    Ehsan, Nava
    Jiang, Lihua
    Gokden, Alper
    Dai, Xiaoguang
    Aguet, Francois
    Brown, Kathleen L.
    Garimella, Kiran
    Bowers, Tera
    Costello, Maura
    Ardlie, Kristin
    Jian, Ruiqi
    Tucker, Nathan R.
    Ellinor, Patrick T.
    Harrington, Eoghan D.
    Tang, Hua
    Snyder, Michael
    Juul, Sissel
    Mohammadi, Pejman
    MacArthur, Daniel G.
    Lappalainen, Tuuli
    Cummings, Beryl
    NATURE, 2022, 608 (7922) : 353 - +
  • [28] IsoTools: a flexible workflow for long-read transcriptome sequencing analysis
    Lienhard, Matthias
    van den Beucken, Twan
    Timmermann, Bernd
    Hochradel, Myriam
    Boerno, Stefan
    Caiment, Florian
    Vingron, Martin
    Herwig, Ralf
    BIOINFORMATICS, 2023, 39 (06)
  • [29] Long-Read Sequencing - A Powerful Toll in Viral Transcriptome Research
    Boldogkoi, Zsolt
    Moldovan, Norbert
    Balazs, Zsolt
    Snyder, Michael
    Tombacz, Ddra
    TRENDS IN MICROBIOLOGY, 2019, 27 (07) : 578 - 592
  • [30] Transcriptome variation in human tissues revealed by long-read sequencing
    Dafni A. Glinos
    Garrett Garborcauskas
    Paul Hoffman
    Nava Ehsan
    Lihua Jiang
    Alper Gokden
    Xiaoguang Dai
    François Aguet
    Kathleen L. Brown
    Kiran Garimella
    Tera Bowers
    Maura Costello
    Kristin Ardlie
    Ruiqi Jian
    Nathan R. Tucker
    Patrick T. Ellinor
    Eoghan D. Harrington
    Hua Tang
    Michael Snyder
    Sissel Juul
    Pejman Mohammadi
    Daniel G. MacArthur
    Tuuli Lappalainen
    Beryl B. Cummings
    Nature, 2022, 608 : 353 - 359