COLREG-Compliant Simulation Environment for Verifying USV Motion Planning Algorithms

被引:4
作者
Bayrak, Mustafa [1 ]
Bayram, Haluk [1 ]
机构
[1] Istanbul Medeniyet Univ, Dept Elect & Elect Engn, Field Robot Lab BILTAM, Istanbul, Turkiye
来源
OCEANS 2023 - LIMERICK | 2023年
关键词
unmanned surface vehicles; testbed environments; motion planning; COLREGs; Virtual RobotX; Gazebo; ROS;
D O I
10.1109/OCEANSLimerick52467.2023.10244676
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
We consider the problem of testing and verifying motion planning algorithms for unmanned surface vehicles under realistic scenarios where multiple vessels travel around as they do in the real world. Once a planning algorithm is developed for USVs, it is crucial to test a planning algorithm under scenarios that closely resemble real world conditions, which include environmental disturbances and real marine traffic. To this end, we present an open-source Virtual RobotX-based simulation environment that enables researchers to add an arbitrary number of vessels and manually defined their routes, or automatically generate them from AIS data. Each vessel is equipped with global and local motion controllers complying with COLREGs.
引用
收藏
页数:10
相关论文
共 14 条
  • [1] Collaborative collision avoidance for Maritime Autonomous Surface Ships: A review
    Akdag, Melih
    Solnor, Petter
    Johansen, Tor Arne
    [J]. OCEAN ENGINEERING, 2022, 250
  • [2] Testbed Scenario Design Exploiting Traffic Big Data for Autonomous Ship Trials Under Multiple Conflicts With Collision/Grounding Risks and Spatio-Temporal Dependencies
    Bakdi, Azzeddine
    Glad, Ingrid Kristine
    Vanem, Erik
    [J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 22 (12) : 7914 - 7930
  • [3] Bingham B, 2019, OCEANS-IEEE
  • [4] Automatic traffic scenarios generation for autonomous ships collision avoidance system testing
    Bolbot, Victor
    Gkerekos, Christos
    Theotokatos, Gerasimos
    Boulougouris, Evangelos
    [J]. OCEAN ENGINEERING, 2022, 254
  • [5] Hybrid Collision Avoidance with Moving Obstacles
    Chai, Yi
    Hassani, Vahid
    [J]. IFAC PAPERSONLINE, 2019, 52 (21): : 302 - 307
  • [6] Chiang Hao-Tien Lewis, 2018, IEEE Robotics and Automation Letters, V3, P2024, DOI 10.1109/LRA.2018.2801881
  • [7] Cockcroft A. N., 2011, A Guide to the Collision Avoidance Rules, V7th
  • [8] Field Robotics Laboratory, Multiple vessels simulation environment
  • [9] Scenario-Based Model Predictive Control with Several Steps for COLREGS Compliant Ship Collision Avoidance
    Hagen, I. B.
    Kufoalor, D. K. M.
    Johansen, T. A.
    Brekke, E. F.
    [J]. IFAC PAPERSONLINE, 2022, 55 (31): : 307 - 312
  • [10] Office for Coastal Management, 2023, Nationwide automatic identification system 2022