Deep learning for video-based automated pain recognition in rabbits

被引:6
|
作者
Feighelstein, Marcelo [1 ]
Ehrlich, Yamit [1 ]
Naftaly, Li [1 ]
Alpin, Miriam [3 ]
Nadir, Shenhav [3 ]
Shimshoni, Ilan [1 ]
Pinho, Renata H. [4 ]
Luna, Stelio P. L. [2 ]
Zamansky, Anna [1 ]
机构
[1] Univ Haifa, Informat Syst Dept, Haifa, Israel
[2] Sao Paulo State Univ UNESP, Sch Vet Med & Anim Sci, Sao Paulo, Brazil
[3] Technion Israel Inst Technol, Fac Elect Engn, Haifa, Israel
[4] Univ Calgary, Fac Vet Med, Calgary, AB, Canada
关键词
D O I
10.1038/s41598-023-41774-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Despite the wide range of uses of rabbits (Oryctolagus cuniculus) as experimental models for pain, as well as their increasing popularity as pets, pain assessment in rabbits is understudied. This study is the first to address automated detection of acute postoperative pain in rabbits. Using a dataset of video footage of n = 28 rabbits before (no pain) and after surgery (pain), we present an AI model for pain recognition using both the facial area and the body posture and reaching accuracy of above 87%. We apply a combination of 1 sec interval sampling with the Grayscale Short-Term stacking (GrayST) to incorporate temporal information for video classification at frame level and a frame selection technique to better exploit the availability of video data.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Deep learning for video-based automated pain recognition in rabbits
    Marcelo Feighelstein
    Yamit Ehrlich
    Li Naftaly
    Miriam Alpin
    Shenhav Nadir
    Ilan Shimshoni
    Renata H. Pinho
    Stelio P. L. Luna
    Anna Zamansky
    Scientific Reports, 13
  • [2] A deep learning method for video-based action recognition
    Zhang, Guanwen
    Rao, Yukun
    Wang, Changhao
    Zhou, Wei
    Ji, Xiangyang
    IET IMAGE PROCESSING, 2021, 15 (14) : 3498 - 3511
  • [3] Automated video-based pain recognition in cats using facial landmarks
    Martvel, George
    Lazebnik, Teddy
    Feighelstein, Marcelo
    Henze, Lea
    Meller, Sebastian
    Shimshoni, Ilan
    Twele, Friederike
    Schuetter, Alexandra
    Foraita, Nora
    Kaestner, Sabine
    Finka, Lauren
    Luna, Stelio P. L.
    Mills, Daniel S.
    Volk, Holger A.
    Zamansky, Anna
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [4] An Automated Video-Based System for Iris Recognition
    Lee, Yooyoung
    Phillips, P. Jonathon
    Micheals, Ross J.
    ADVANCES IN BIOMETRICS, 2009, 5558 : 1160 - 1169
  • [5] Video-Based Human Activity Recognition Using Deep Learning Approaches
    Surek, Guilherme Augusto Silva
    Seman, Laio Oriel
    Stefenon, Stefano Frizzo
    Mariani, Viviana Cocco
    Coelho, Leandro dos Santos
    SENSORS, 2023, 23 (14)
  • [6] Video-Based Facial Expression Recognition Using a Deep Learning Approach
    Jangid, Mahesh
    Paharia, Pranjul
    Srivastava, Sumit
    ADVANCES IN COMPUTER COMMUNICATION AND COMPUTATIONAL SCIENCES, IC4S 2018, 2019, 924 : 653 - 660
  • [7] Automated Corn Ear Height Prediction Using Video-Based Deep Learning
    Wong, Johnson
    Sha, Hao
    Al Hasan, Mohammad
    Mohler, George
    Becker, Steve
    Wiltse, Curtis
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 2371 - 2374
  • [8] FlowerAction: a federated deep learning framework for video-based human action recognition
    Thi Quynh Khanh Dinh
    Thanh-Hai Tran
    Trung-Kien Tran
    Thi-Lan Le
    Journal of Ambient Intelligence and Humanized Computing, 2025, 16 (2) : 459 - 470
  • [9] Multiple Instance Learning with Deep Instance Selection for Video-based Face Recognition
    Liu, Ning
    PROCEEDINGS OF THE 2016 3RD INTERNATIONAL CONFERENCE ON MECHATRONICS AND INFORMATION TECHNOLOGY (ICMIT), 2016, 49 : 327 - 332
  • [10] Deep Learning for Video-Based Assessment in Surgery
    Yanik, Erim
    Schwaitzberg, Steven
    De, Suvranu
    JAMA SURGERY, 2024, 159 (08) : 957 - 958