ScaleDet: A Scalable Multi-Dataset Object Detector

被引:9
作者
Chen, Yanbei [1 ]
Wang, Manchen [1 ]
Mittal, Abhay [1 ]
Xu, Zhenlin [1 ]
Favaro, Paolo [1 ]
Tighe, Joseph [1 ]
Modolo, Davide [1 ]
机构
[1] AWS AI Labs, Shanghai, Peoples R China
来源
2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR | 2023年
关键词
D O I
10.1109/CVPR52729.2023.00704
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-dataset training provides a viable solution for exploiting heterogeneous large-scale datasets without extra annotation cost. In this work, we propose a scalable multi-dataset detector (ScaleDet) that can scale up its generalization across datasets when increasing the number of training datasets. Unlike existing multi-dataset learners that mostly rely on manual relabelling efforts or sophisticated optimizations to unify labels across datasets, we introduce a simple yet scalable formulation to derive a unified semantic label space for multi-dataset training. ScaleDet is trained by visual-textual alignment to learn the label assignment with label semantic similarities across datasets. Once trained, ScaleDet can generalize well on any given upstream and downstream datasets with seen and unseen classes. We conduct extensive experiments using LVIS, COCO, Objects365, OpenImages as upstream datasets, and 13 datasets from Object Detection in the Wild (ODinW) as downstream datasets. Our results show that ScaleDet achieves compelling strong model performance with an mAP of 50.7 on LVIS, 58.8 on COCO, 46.8 on Objects365, 76.2 on OpenImages, and 71.8 on ODinW, surpassing state-of-the-art detectors with the same backbone.
引用
收藏
页码:7288 / 7297
页数:10
相关论文
共 52 条
[1]  
[Anonymous], 2021, ICML
[2]  
[Anonymous], 2021, CVPR, DOI DOI 10.1109/CVPR46437.2021.01101
[3]  
[Anonymous], 2021, CVPR, DOI DOI 10.1109/CVPR46437.2021.00294
[4]  
[Anonymous], **DATA OBJECT**, DOI DOI 10.5281/ZENODO.5143773
[5]  
[Anonymous], 2019, CVPR, DOI DOI 10.1109/CVPR.2019.00550
[6]   Recycle-GAN: Unsupervised Video Retargeting [J].
Bansal, Aayush ;
Ma, Shugao ;
Ramanan, Deva ;
Sheikh, Yaser .
COMPUTER VISION - ECCV 2018, PT V, 2018, 11209 :122-138
[7]  
Heilbron FC, 2015, PROC CVPR IEEE, P961, DOI 10.1109/CVPR.2015.7298698
[8]  
Cai Z., 2022, ECCV
[9]  
Carion Nicolas, 2020, ECCV
[10]   Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset [J].
Carreira, Joao ;
Zisserman, Andrew .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :4724-4733